The Lifetime of Protoplanetary Disks Surrounding Intermediate-mass Stars

Chikako Yasui¹, Naoto Kobayashi¹, Alan T. Tokunaga², Masao Saito³ 1. University of Tokyo, 2. University of Hawaii, 3. NAOJ

ABSTRACT

Derivation of disk lifetime for intermediate mass (IM-)stars (1.5–7M_☉)

✓ Derivation of IM-star disk fraction (IMDF) for many (~20) young (≤10Myr) clusters using 2MASS JHK (K-disk) and Spitzer IRAC (MIR-disk) data ✓ Disk lifetime of IM-stars

 $t_{(IM)} = 4Myr (innermost K-disk) / t_{(IM)} = 6.5Myr (MIR-disk)$

Implication to disk evolution of IM-stars

✓ Significantly earlier innermost disk dispersal (~0.3AU) than inner & outer disk (≥25AU) is suggested (∆t~3Myr) → Probably faster dust growth in the innermost disk

✓ IM-stars have much longer transition phase than low-mass stars

Introduction

Disk lifetime of protoplanetary disks

• One of the most fundamental parameters because it directly restricts both star formation and planet formation

Inner disk

~0.1-5AU

Outer disk

~50-100AU

Estimated to be ~5–10Myr for low-mass stars (≤1M_☉) (Williams & Cieza 2011, ARA&A, 49, 67)

√Inner disk (~0.1–5AU): 5–10Myr Dust: NIR to MIR

e.g., Haisch+2001, ApJ, 553, 153; Sicilia-Aguilar+2006, ApJ, 638, 897 Gas: Ha (Fedele+2010, A&A, 510, 72)

✓Outer disk (≥50 AU):

same as inner disks

Dust: Submm

(e.g., Andrews & Williams 2005, ApJ, 631, 1134) **Gas**: FIR [OI] 63μm
(e.g., Meeus+2012, A&A, 544, 78; Mathews+2010, 518, 127) The entire disk (~0.1–100 AU / gas+dust) disperse almost simultaneously (∆t≤0.5Myr)

For Intermediate-mass stars (≥1.5M_☉)

Qualitatively, suggested shorter disk lifetime

than low-mass stars (Hernandez+2005, ApJ, 707, 705; Kennedy & Kenyon 2009, ApJ, 695, 1210)

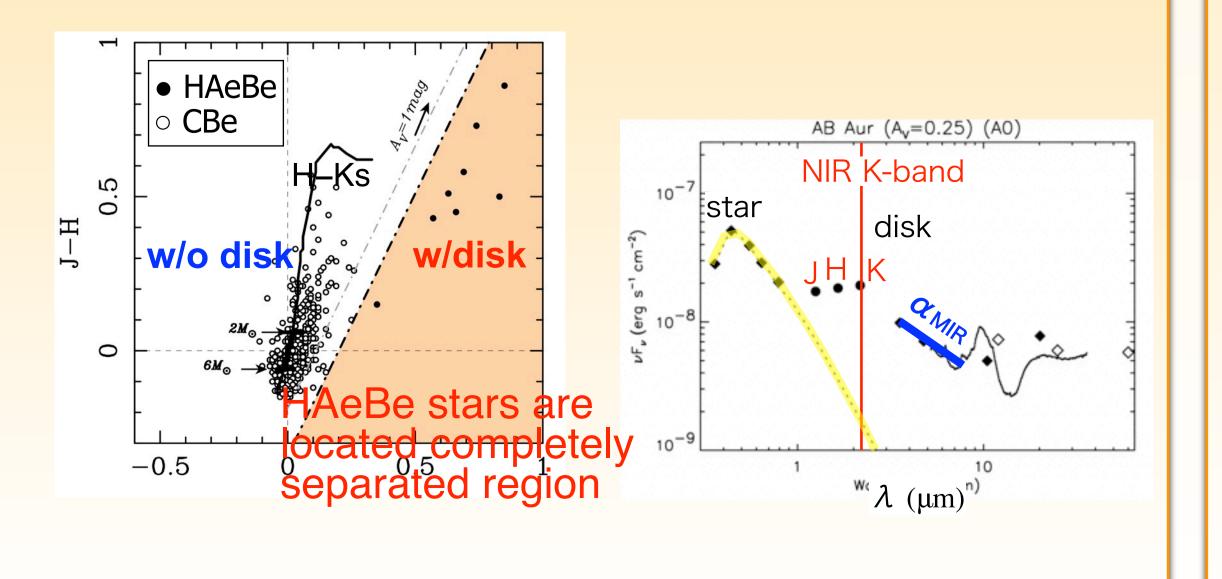
Quantitative derivation is necessary

Motivation

Mass dependence of disk lifetime could have a great impact on mechanism of disk dispersal and planet formation (e.g., Gorti+2009, ApJ, 705, 1237; Burkert & Ida 2007, ApJ, 660, 845)

Definition of IMDF

IMDF= disk fraction for intermediate-mass stars


Mass range setting

•Set mass range as ~1.5–7M_☉

•Pick up stars based on spectral types with cluster ages (PMS isochrone model from Siess+2000, A&A, 358, 593)

Disk excess

√JHK IMDF ✓ MIR IMDF HAeBe stars have large H-K excess From MIR SED slope $\alpha_{MIR} \ge -2.2$: w/disk $\alpha = d \ln \lambda F \lambda / d \ln \lambda$ Spitzer IRAC (3.6-8µm data)

Results

IMDF derivation

Target clusters

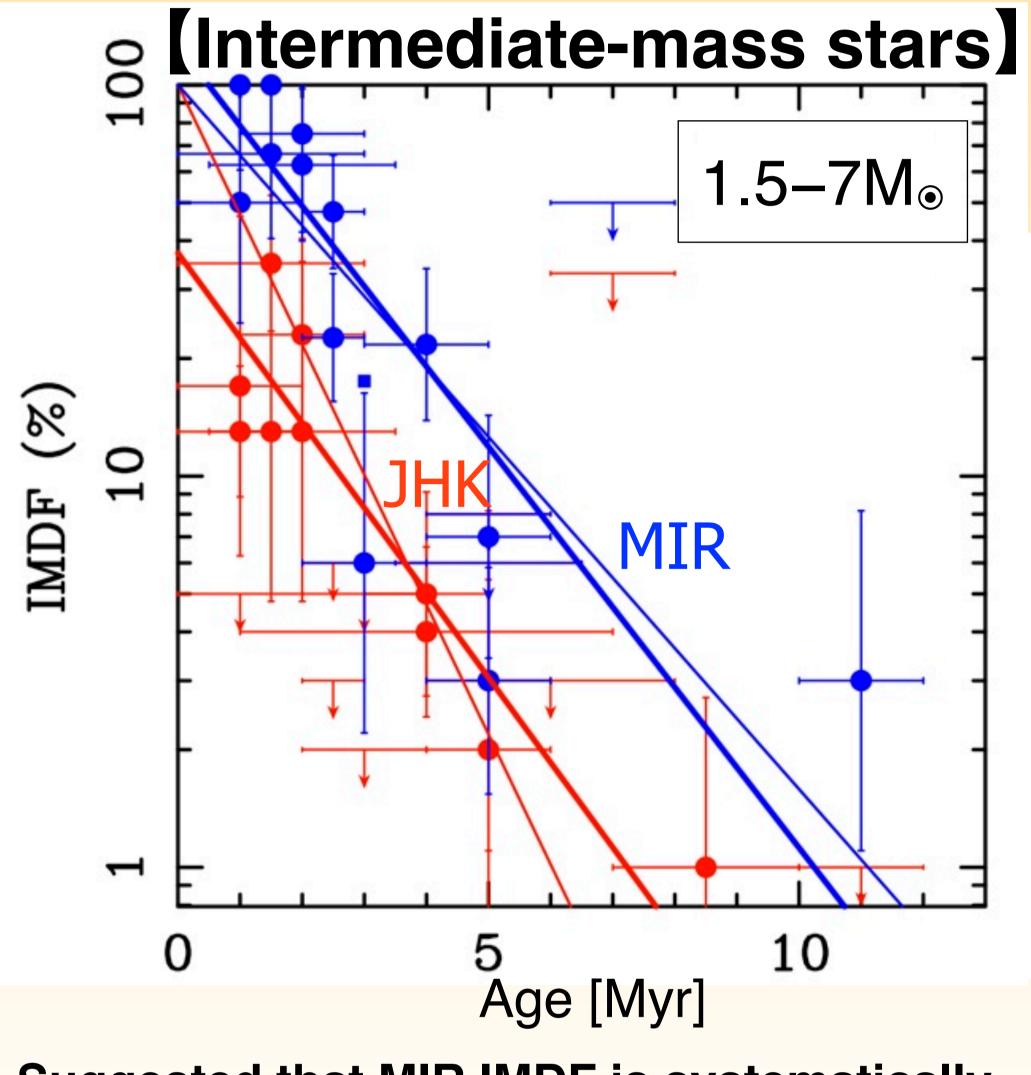
Almost all of the well-known clusters (N≈20)

Nearby: D ≤ 2kpc

Young: Age ≤ 10Myr

~20 young clusters used

Basically the same targets for JHK and MIR (JHK: 2MASS, Spitzer: IRAC 8µm)


Disk lifetime

χ² fitting with an exponential function

• The disk lifetime is defined as the timescale of disk fraction to fall down to 5%

Tab. 1 Disk lifetime and stellar mass

	Mass (M⊙)	t _{энк} (Myr)	t _{MIR} (Myr)
IM	~2.5	4.4±0.9	6.9±1.0
LM	~0.5	9.7±1.1	8.6±0.7
Mass dependence		M*-0.5±0.2	M*-0.1±0.1

(Data: MIR IMDF: mainly from Kennedy & Kenyon 2009, ibid; MIR LMDF: mainly from Roccatagliata+2011, ApJ, 733, 113; JHK LMDF data: from Yasui+2009, ApJ, 705, 54; Yasui+ 2010, ApJ, 723, L133)

As comparison Low-mass stars $M_{lim} < 1 M_{\odot}$ 10 Age [Myr]

> JHK and MIR LMDF seem to disperse almost simultaneously.

Discussion

Disk evolution sequence

Suggestions from comparison of JHK vs. MIR disk evolution

◆ IM stars (2–6M_☉) ◆ LM stars (M_{lim}<1M_☉) *Rg* 25AU 100AU 0.1AU 100AU Ηα 0Myr 3Myr Transition disk phase 4–5 Myr $(\Delta t \sim 3Myr)$ Transition disk phase (∆t≲0.5Myr) IM-stars may have MIR-disks and sub-mm disks

Cause for the lack of close-in planet?

are strongly correlated both for IM and LM stars (e.g., Andrews & Williams 2005, ApJ, 631, 1134)

a substantially long "transition disk phase"

(Cf. For LM-stars ≤20%; Muzerolle+2010, ApJ, 708, 1107)

Possible cause for the time-lag

Possibility 1 Disk dispersal

Different disk dispersal mechanism compared to

low-mass stars? ✓Inner disk edge ... determined by dust sublimation Not changed (In radiative equilibrium condition)

✓Inner disk dispersal ... mainly by accretion

Not changed (Tracer (H α) exist) **✓**Outer disk dispersal ... mainly by photoevaporation

Not directly related → Seems unlikely

Possibility 2 Dust growth (settling)

According to analytical calculation

 $t_{grow} \sim \Sigma_g/\Sigma_d \cdot h_d/z \cdot T_K$ (e.g., Nakazawa+1981, Icarus, 45, 517)

 Σ : surface density $T_{\rm K}$: Kepler orbital period $\propto \rm r^3/2$

→ Consistent with faster dust growth in inner disks However, difference between IM and LM inner disk evolution cannot be explained

Simply calculated t_grow appears much shorter (e.g., a few 100 yr) than actually observed Additional processes are proposed (e.g., turbulence, two-layer disk model) These processes may be less effective in IM-stars.