the

DN Tau - a young low-mass CTTS in X-rays

J. Robrade¹, M. Güdel², H.M. Günther³, and J.H.M.M. Schmitt¹

¹Hamburger Sternwarte, University of Hamburg, Germany *e-mail: jrobrade@hs.uni-hamburg.de* ²Department of Astronomy, University of Vienna; ³Harvard-Smithsonian Center for Astrophysics

We present a deep XMM-Newton observation of DN Tau, a M0 type classical T Tauri star (CTTS) and extend the sample of young accreting stars studied with high-resolution X-ray spectroscopy to lower masses. We detect X-ray emission from magnetic activity and accretion shocks. DN Tau's X-ray properties link it to more massive and older CTTS. The strong hot corona makes DN Tau one of the X-ray brightest CTTS in its mass range, while the low mass and large radius result in a very cool accretion component and thus reduces its imprint in the observed X-ray spectrum and emission line diagnostics.

M

The target: DN Tau

X-ray properties of DN Tau in brief

• DN Tau is X-ray bright, $\log L_{\rm X} = 30.2 \, {\rm erg \, s^{-1}}$

X Protostars

Stellar parameter

Sp. type	$M 0^{1,2,3}$	
$T_{ m eff}$	3800 ³ 3850 ¹	K
M_*	$0.38^{1,2} \dots 0.52^{3}$	M_{\odot}
R_*	2.09 ²	R_{\odot}
$L_{ m bol}$	$0.87^{2} \dots 1.0^{1}$	L_{\odot}
A_V	$0.25^{\ 2} \dots \ 0.49^{\ 1}$	mag
$\log \dot{M}_{ m acc}$	-7.79 ³ 8.46, ²	$M_{\odot}yr^{-1}$

¹ Kenyon & Hartmann (1995), ² Gullbring et al. (1998, ³ White & Hillenbrand (2004)

• single star, age: 0.5 - 1.1 Myr (Gullbring et al. 1998, Telleschi et al., 2007) • viewed under moderate inclination ($i \approx 35^{\circ}$) (Muzerolle et al., 2003) • large magnetic field of 2 kG (Johns-Krull, 2007) • $P_{\rm rot} = 6.3 \,\mathrm{d}, \, Vsini = 12.3 \,\mathrm{km \, s^{-1}}$ (Vrba et al., 1993; Nguyen et al., 2012) • photometric variable, large spot coverage (Bouvier et al., 1986) • moderate accretor, but highly variable $EWH_{\alpha} = 12 - 87$ Å • quite massive disk, close inner rim (Muzerolle et al., 2003; Andrews & Williams 2005) • X-ray detected by *Einstein* and *ROSAT* (Walter & Kuhi 1981; Neuhäuser et al. 1995) • XMM-Newton: XEST source (No. 12-040) (Güdel et al., Telleschi et al., 2007) • X-ray brightness variations (factor three) on decades timescale • low $N_{\rm H}$ and low M_*/R_*

• active corona, hot plasma dominates • accretion shock signatures pronounced in cool plasma • strongest variability in cooler plasma components • no abnormal X-ray absorption ($N_{\rm H}$ consistent with A_V) • several flares, abundances show IFIP-effect

X-ray light curves of DN Tau, 0.2-5.0 keV

X-ray spectra of DN Tau, PN data+model 2010 (black), 2005 (blue). *Inset:* Active ($t \ge 55$ ks, black) and quasi-quiescent (red) half of the 2010 observation with possible contributions from Fe $\mathbf{K}\alpha$ (6.4 keV) and Fe XXV (6.7 keV).

Spectral fit results and 90% conf. range, MOS data; FIP (First Ion*ization Potential*) per element, GrSa98, L_X emitted (observed) value.

Par.	2005	2010	unit
$N_{ m H}$	0.8^{+}_{-}	$0.1 \\ 0.1$	$10^{21} {\rm cm}^{-2}$
kT1	$0.17\substack{+0.05 \\ -0.03}$	$0.23^{+0.03}_{-0.03}$	keV
kT2	$0.60^{+0.07}_{-0.06}$	$0.64_{-0.03}^{+0.03}$	keV
kT3	$2.27\substack{+0.33 \\ -0.21}$	$1.91\substack{+0.15 \\ -0.14}$	keV
EM1	$0.8_{-0.5}^{+0.9}$	$2.0^{+0.6}_{-0.5}$	$10^{52} {\rm cm}^{-3}$
EM2	$3.7^{+0.5}_{-0.4}$	$5.6_{-0.6}^{+0.5}$	$10^{52} {\rm cm}^{-3}$
EM3	$6.4^{+0.6}_{-0.5}$	$5.3_{-0.4}^{+0.5}$	$10^{52} {\rm cm}^{-3}$
Mg (7.6 eV)	0.52	-0.26 -0.18	solar
Fe (7.9 eV)	0.35	-0.12 -0.10	solar
Si (8.2 eV)	0.32^{+}	-0.14 -0.12	solar
S (10.4 eV)	0.24^{+}	-0.18 -0.17	solar
O (13.6 eV)	0.65^{+}_{-}	-0.28 -0.16	solar
Ne (21.6 eV)	1.51^{+}_{-}	-0.49 -0.38	solar
$\chi^2_{red^{(\mathrm{d.o.f.})}}$	1.05 (4	432)	
$L_{\rm X}$ (0.2-5.0 keV)	1.32 (1.00)	1.62 (1.13)	$10^{30} \mathrm{erg}\mathrm{s}^{-1}$

 \Rightarrow ideal for X-ray studies of young, inflated low-mass CTTS

XMM-Newton observations

• 120 ks, August 2010 (PI: Robrade) • 30 ks, March 2005 (PI: Guedel) • simultaneous UV coverage (UVW1/U filter)

Hardness ratio of DN Tau, 2010 (black), 2005 (blue).

• HR = (H - S)/(H + S) with S: 0.2 – 0.8 keV, H: 0.8 – 5.0 keV

• fainter state 2005 is overall harder

Accretion shock signatures

X-ray/UV correlation

Temperature diagnostics:

The CTTS f/i - ratios in He-like triplets are sensitive to density, high density plasma $(f/i \leq 1)$ for **O** VII indicates contributions from accretion shocks.

• O VII traces cool (2 MK) plasma regime

• $f/i = 0.36 \pm 0.26$ (2010) and $f/i = 0.92 \pm 0.73$ (2005) • $n_e = 3.0 (1.6 - 11.8) \times 10^{11} \text{ cm}^{-3}$ (2010) and $n_e = 1.0 (0.4 - 10.6) \text{ cm}^{-3}$ $(6.1) \times 10^{11} \text{ cm}^{-3}$ (2005), neglecting FUV photons

• high density plasma from accretion shock in O VII

• corona quite faint at low temperatures

• upper limit from NeIX consistent

The soft excess of DN Tau.

Ratio of the OVIII / OVII line flux vs. summed luminosity for main-sequence stars (diamonds) and CTTS (triangles); shockheated material with $V_{\rm sh} \sim 250...600 \ {\rm km \, s^{-1}}$ produces only cool plasma that predominantly emits at softer X-rays. • O VIII / O VII line ratio vs. summed luminosity

• traces cool (1-5 MK plasma), abundance-independent

• soft excess present on DN Tau

• weakest soft excess of all studied CTTS

- young low-mass object \rightarrow small M/R $-T_{sh} \propto V_{sh}^2$ and $V_{sh} \propto \sqrt{M_*/R_*}$

Top: **OM light curves** (2005, U: λ_{eff} 3440 Å; 2010, UVW1: λ_{eff} 2910 Å). Bottom: The largest 2010 flare in X-rays (black, 300 s binning) and UV (red, 60 s binning).

• X-ray flares are accompanied by clear UV counterparts

• UV emission precedes the X-rays \rightarrow chromospheric evaporation

• no general correlation between X-ray and UV brightness on longer timescales (hours to days)

Check out our forthcoming publication to be submitted to A&A...