Satellite formation from ancient massive rings

Aurélien Crida ${ }^{1}$ \& Sébastien Charnoz ${ }^{2,3}$
${ }^{1}$ Univ. Nice Sophia-antipolis / C.N.R.S. / Observatoire de la Côte d'Azur, Lagrange UMR 7293, FRANCE ${ }^{2}$ Université Paris Diderot / CEA Sap, AIM ${ }^{3}$ I.U.F., Paris, FRANCE
contact : crida@oca.eu

Context: A tidal disk (disk of solids around a planet, in which tides prevent accretion) spreads beyond the Roche radius r_{R}. What happens?

Result: First, 1 satellite accretes all the incoming material, until a critical mass. Then, a series of satellites form, migrate, and merge.
Conclusion: This analytical model explains the structure of Saturn's system, but also applies to Uranus, Neptune... and the Earth !

$$
\begin{aligned}
& q=M_{\text {satellite }} / M_{\text {planet }}, \quad D=M_{\text {disk }} / M_{\text {planet }}, \quad r=\text { satellite's orbital radius, } \quad T_{R}=\text { orbital period at } r_{R} . \\
& \Delta=\left(r-r_{R}\right) / r_{R}, \quad F=\text { the flux of material crossing } r_{R} \text { (assumed constant), } \quad \tau_{d}=M_{\text {disk }} /\left(F T_{R}\right) . \\
& \text { Due to interactions with the disk, a satellite migrates outwards, at a rate proportionnal to } q D \Delta^{-3} . \\
& \text { (Lin \& Papaloizou 1979, Goldreich \& Tremaine 1980) }
\end{aligned}
$$

Continuous regime:

The first body forms by gathering all the incoming material: $M_{\text {satellite }}(t)=F_{x} t$.
As it migrates, $q=\left(3^{3} / 2^{6} \tau_{\mathrm{d}}\right)^{1 / 2} \Delta^{2}$.
This stands as long as the satellite is not too far from the disk, i.e. $\Delta<2 r_{\text {Hill }} / r$. This gives
$\Delta<\Delta_{\mathrm{c}}=\left(3 / \tau_{\mathrm{d}}\right)^{1 / 2}$ $q<q_{c}=-2 \tau_{\mathrm{d}}{ }^{-3 / 2}$

After q_{c} or Δ_{c} is reached, the satellite goes on migrating outwards at constant mass, and a new satellite forms.

Pyramidal regime:

Satellites of mass q_{c} are produced every δt, at Δ_{c}, and migrate outwards. As their migration speed decreases, they merge in pairs, producing regularly $2 q_{\mathrm{c}}$ bodies, who merge further, and so on..

Application:

For each planet of the Solar System, consider a Miminum Mass Satellites Tidal Disk, with $D=150 \%$ times the total mass of present regular satellites.
\boldsymbol{D} is linked to τ_{d} (thus Δ_{c} and q_{c}) via a relation between the disk surface density and its viscosity (Daisaka et al 2001).

Giant planets : \quad small D, large τ_{d}, small $\Delta_{\mathrm{c}}, q_{\mathrm{c}}$: the pyramidal regime dominates \rightarrow many satellites of increasing mass starting from the Roche radius.

Moon forming disk : large D, small $\tau_{d} \rightarrow q_{c}=\sim D$: continuous regime, the Earth should have only 1 big Moon!

