Satellite formation from ancient massive rings

Aurélien Crida¹ & Sébastien Charnoz^{2,3}

¹ Univ. Nice Sophia-antipolis / C.N.R.S. / Observatoire de la Côte d'Azur, Lagrange UMR 7293, FRANCE ² Université Paris Diderot / CEA Sap, AIM ³ I.U.F., Paris, FRANCE contact : crida@oca.eu

- <u>Context</u>: A *tidal disk* (disk of solids around a planet, in which tides prevent accretion) spreads beyond the Roche radius r_R . What happens ?
- **Result :** First, 1 satellite accretes all the incoming material, until a critical mass. Then, a series of satellites form, migrate, and merge.

<u>Conclusion</u> : This <u>analytical</u> model explains the structure of Saturn's system, but also applies to Uranus, Neptune... and the Earth !

Prerequisites and notations :

 $q = M_{\text{satellite}} / M_{\text{planet}}$, $D = M_{\text{disk}} / M_{\text{planet}}$, r = satellite's orbital radius, $T_{\text{R}} = \text{orbital period at } r_{\text{R}}$. $\Delta = (r - r_{\text{R}}) / r_{\text{R}}$, $F = \text{the flux of material crossing } r_{\text{R}}$ (assumed constant), $\tau_{\text{d}} = M_{\text{disk}} / (F T_{\text{R}})$. Due to interactions with the disk, a satellite migrates outwards, at a rate proportionnal to $qD\Delta^{-3}$.

(Lin & Papaloizou 1979, Goldreich & Tremaine 1980)

Continuous regime :

The first body forms by gathering all the incoming material : $M_{\text{satellite}}(t) = F_{x}t$.

A*q*

 \boldsymbol{q}_{c}

As it migrates, $q = (3^3/2^6 \tau_d)^{1/2} \Delta^2$.

This stands as long as the satellite is not too far from the disk, *i.e.* :

After q_c or Δ_c is reached, the satellite goes on migrating outwards at constant mass, and a new satellite forms.

Pyramidal regime :

Satellites of mass q_c are produced every δt , at Δ_c , and migrate outwards. As their migration speed decreases, they merge in pairs, producing regularly $2q_c$ bodies, who merge further, and so on...

Application :

For each planet of the Solar System, consider a *Miminum Mass Satellites Tidal Disk*, with **D**=150% times the total mass of present regular satellites.

D is linked to τ_d (thus Δ_c and q_c) via a relation between the disk surface density and its viscosity (Daisaka et al 2001).

✓ <u>Giant planets</u>: small *D*, large τ_d , small Δ_c , q_c : the pyramidal regime dominates → many satellites of increasing mass starting from the Roche radius.

✓ Moon forming disk : large *D*, small $\tau_d \rightarrow q_c = ~D$:
continuous regime, the Earth should have only 1 big Moon!

Reference : Crida & Charnoz 2012, Science. See also : Charnoz et al. 2010, 2011.