

Early History of the Solar System

K.Vincke, S. Pfalzner

Max-Planck-Institut für Radioastronomie, Bonn

Match young massive cluster types to present day properties of solar system

SOLAR SYSTEM PROPERTIES

Most stars do **not** form in isolation but in groups¹. Different indications exist that the Sun was born in a stellar cluster.

Mass (filled) and density (open) evolution of stellar clusters.

- 2 types of massive clusters: compact clusters & loose clusters
- For same cluster age: significant difference in stellar density between both types!

In which environment did the Sun form?

PROBABILITY OF SOLAR SYSTEM FORMING ENCOUNTER

Encounter probability for Sun as function of Sun age.

Clusters become less dense with age \Rightarrow (close) encounters less probable with time!

- \Rightarrow Probability for solar system forming encounter decreases with time
- \Rightarrow Encounter happened in early

forming phase

cluster age [Myr]

Stellar cluster density as a function of cluster age

- Both cluster types fulfil conditions at some point of development
- But: very violent interactions in compact clusters during first Myrs! \Rightarrow Protoplanetary discs are largely destroyed!

 \Rightarrow Sun formed most probably in loose cluster

CONCLUSION

- 2 types of clusters: **Compact clusters & loose clusters**
- Sun formed most probably in **loose cluster environment**
- Close stellar encounter disturbed disc in early formation phase

REFERENCES

Encounter probability as function of eccentricity.

Cluster properties (e.g. size, density) change significantly during evolution

Encounter type changes: > 2 Myrs (dense): hyperbolic, low mass ratio < 3 Myrs (sparse): parabolic, high mass ratio S. Pfalzner. Early Evolution of the Birth Cluster of the Solar System. A&A, 549, 2013.

- [1] C. J. Lada and E. A. Lada. Embedded Clusters in Molecular Clouds. ARA&A, 41:57-115, 2003.
- [2] G. J. Wasserburg, M. Busso, R. Gallino, and K. M. Nollett. Short-lived Nuclei in the Early Solar System: Possible AGB Sources. Nuclear Physics A, 777:5-69, 2006.
- [3] F. C. Adams. The Birth Environment of the Solar System. ARA&A, 48:47–85, 2010.
- S. Pfalzner, P. Vogel, J. Scharwächter, C. Olczak. Parameter study of star-disc encounters. A&A, 437:967-976, 2005.
- [5] A. Morbidelli, H. F. Levison. Scenarios for the Origin of the Orbits of the Trans-Neptunian Objects 2000 CR105 and 2003 VB12 (Sedna). Astronomical Journal, 128:2564-2576, 2004.

For further information, please ask me, visit www.mpifr-bonn.mpg.de/staff/spfalzner or:

