

ers of extreme exoEarth environment Siddharth Hegde¹ and Lisa Kaltenegger^{1,2}

Institute for Astronomy, Germany; 2-Harvard-Smithsonian Center for Astrophysic

Abstract: Several rocky planets and planetary candidates have been detected with minimum masses consistent with rocky planets in the Habitable Zone of their host stars. Detailed information in regard to the habitability of Earth-sized extrasolar planets or "exoEarths" can be achieved by studying the atmospheric and surface properties of the planet in contention. A lowresolution spectrum in the form of a color-color diagram of a planet is likely to be one of the first post-detection quantities to be measured for the case of direct detection. A color-color diagram, distinguishes giant planets from rocky ones for solar system objects (see, Traub, 2003). Using a similar strategy, we explore potentially detectable surface features and their connection to and importance as a habitat for extremophiles as known on Earth, thereby providing a link between geomicrobiology and observational astronomy. We use filter (or 3-color) photometry in the visible as a first step in the characterization of rocky exoplanets to prioritize targets for follow up spectroscopy.

Extremophiles on Earth

- Extremophiles (literally "lovers of extreme environments") are organisms that live and thrive in very harsh environments and provide us with the minimum known envelope of environmental limits for life on our planet.
- To explore a wide definition for the limits of life on exoplanets, we focus on extremophiles. Environmental "extremes" are defined in terms of physical and geochemical parameters (see, Table 1).
- Similar environmental factors should be dominant on rocky exoplanets.
- We explore the detectability of such extreme environments as well as known extremophiles using a color-color diagram (Fig. 1).

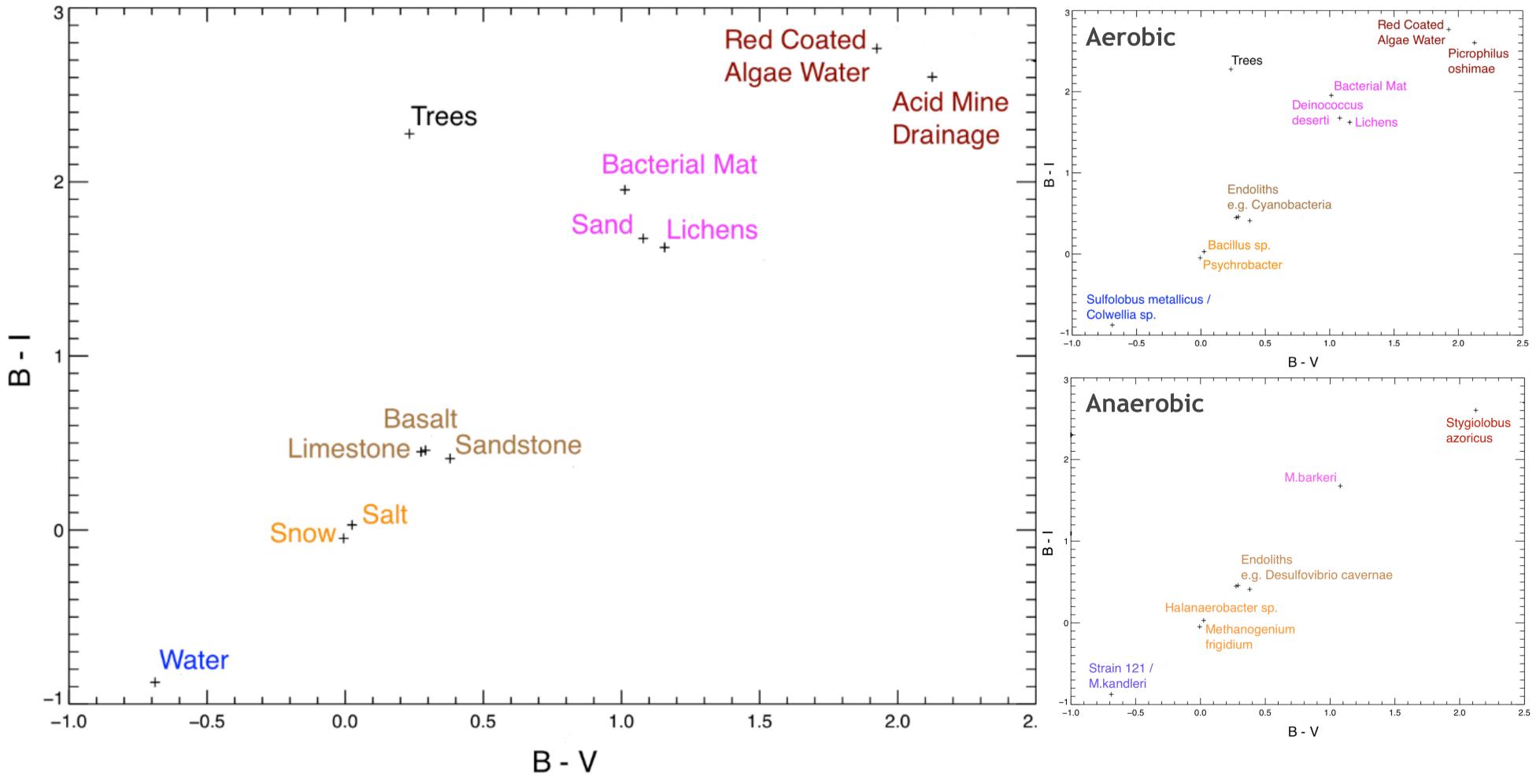
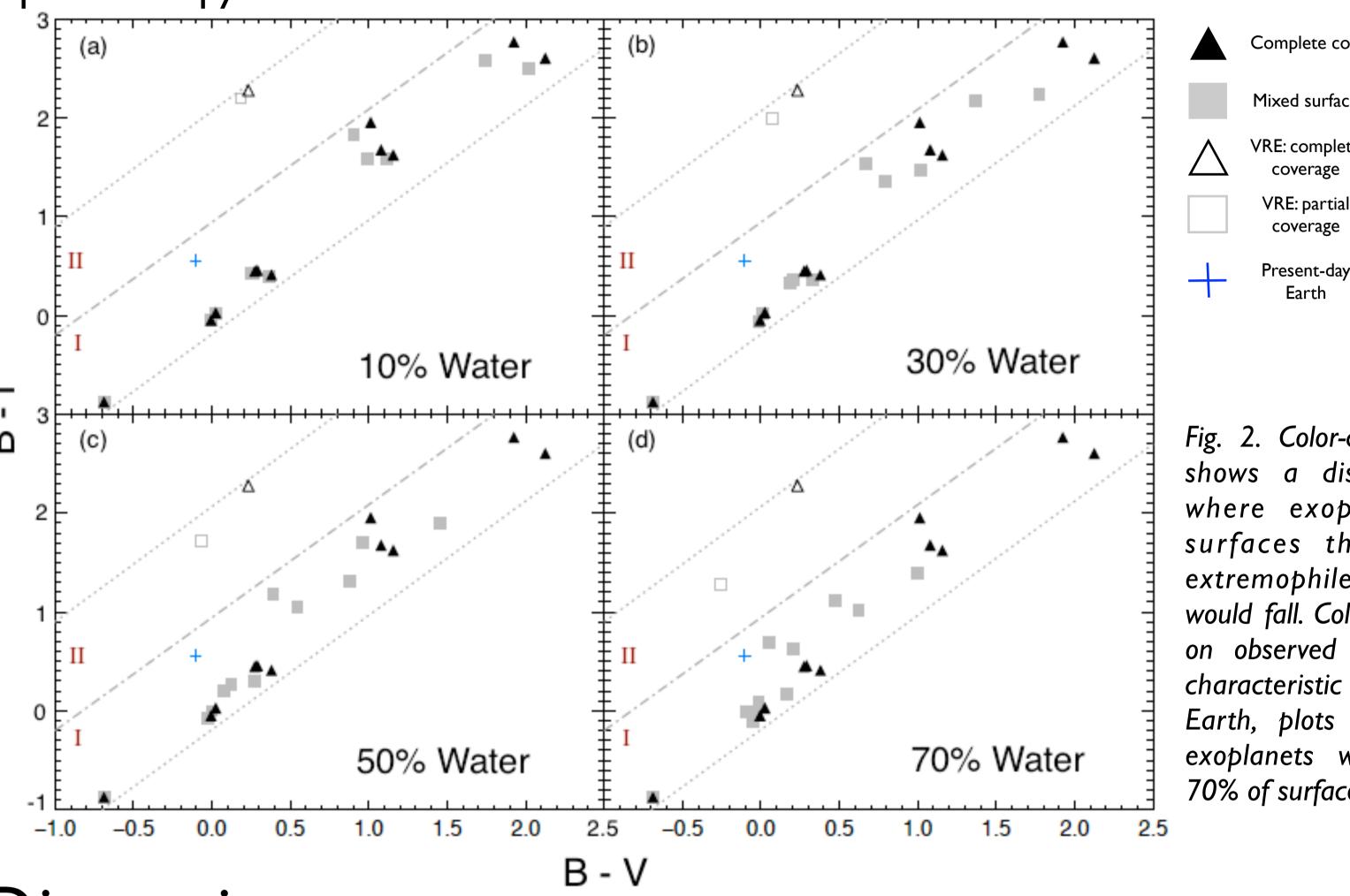



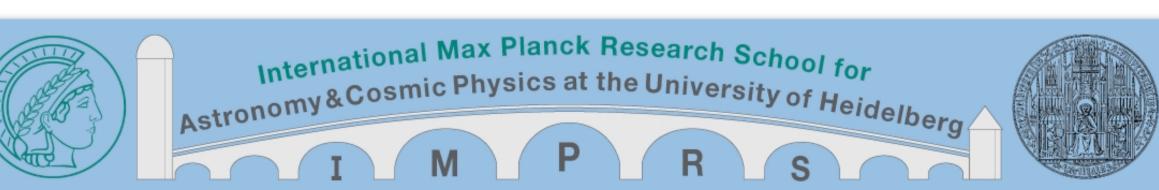
Fig. 1. Color-color diagram based on observed reflectivity of characteristic surfaces (like oceans, snow, rocks, etc) that support extremophiles on Earth. The figures on the inset show which classes of extremophiles can be potentially distinguished for aerobic and anaerobic atmospheres.

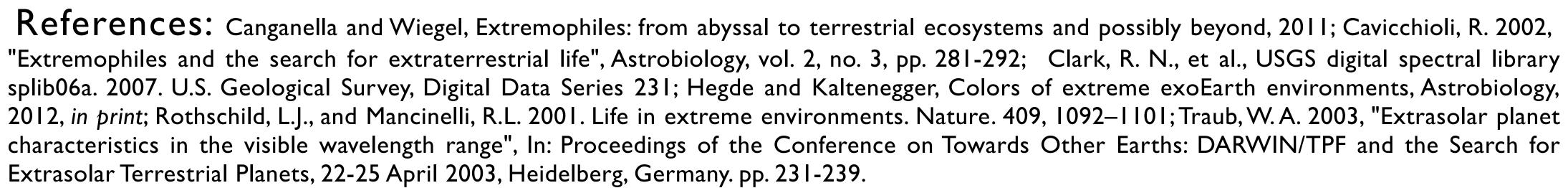
Environmental	Class	Defining Growth	Environment / Source	Remotely Detectable	Example
Parameter	Ciuss	Condition	Environment / Source	Observable	Organisms
	Hyperthermophile		Submarine Hydrothermal Vents		Pyrolobus fumarii, Strain 121
	Thermophile	60 - 80 °C	Hot Spring		Synechococcus lividis, Sulfolobus sp
Low Temperature	-	< 15 °C	Ice, Snow	Ice, Snow	Psychrobacter, Methanogenium spp.
High pH	Alkaliphile	ph > 9	Soda Lakes	Salt	Bacillus firmus OF4,
					Haloanaerobium alcaliphilum
Low pH	Acidophile	ph < 5 (typically	Acid Mine Drainage,	Acid Mine Drainage	Picrophilus oshimae/torridus,
		much less)	Volcanic Springs		Stygiolobus azoricus
High Pressure	Piezophile	High pressure	Deep Ocean eg. Mariana Trench	Water	M.kandleri, Pyrococcus sp., Colwellia sp.
Radiation	-	Tolerates high levels of radiation	Sunlight eg. High UV radiation	Sand, Rocks	Deinococcus radiodurans, Thermococcus gammatolerans
Salinity	Halophile	2 - 5 M NaCl	Salt Lakes, Salt Mines	Salt	Halobacteriaceae, Dunaliella salina, Halanaerobacter sp.
Desiccation	Xerophile	Anhydrobiotic	Desert, Rock surfaces	Sand, Rocks	Artemia salina, Deinococcus sp., Lichens, Methanosarcina barkeri
Rock-dwelling	Endolith	Resident in rock	Upper subsurface to deep subterranean	Rocks	Lichens, Cyanobacteria, Desulfovibrio cavernae

Table 1. Classification of extremophiles.

Fig. 2. Color-color diagram shows a distinct region where exoplanets with surfaces that support extremophiles on Earth would fall. Colors are based on observed reflectivity of characteristic surfaces on Earth, plots show model exoplanets with 10% to 70% of surface oceans.

Discussion


- Exploring surface features of exoplanets only becomes possible if either no cloud cover exists on an exoplanet or the SNR of each observation is sufficiently high to remove the cloud contribution from the overall detected signal.
- Further in-depth characterization can be obtained by modifying the bandpass definitions to distinguish certain surfaces or use narrow-band filters to distinguish known near-similar environmental signals as well, provided a high enough SNR is available.
- The characterization of surface features for Earth-type rocky planet environments using a color-color plot alone is not a reliable detection of life on an exoplanet, but can prioritize targets for follow up spectroscopy.


Conclusions

- Many surface environments on Earth have characteristic albedos and occupy a different color space in the visible waveband (0.4 μm - 0.9 μm) that can be distinguished remotely using standard Johnson-Cousins broadband filters.
- A simple low-resolution color-color diagram can be used to remotely characterize different types of rocky planet environments (Fig. 1) that support extremophiles on Earth (Table 1).
- Different surface environments group in the color-color diagram e.g. salt and snow (Fig. 1). Bacterial mats, lichens and red algae in acid mine drainage are shown as examples of extremophiles, that have measured surface reflectance. Trees are shown as reference to relate our work to the Vegetation Red Edge feature of terrestrial land plants. The figures in the inset (Fig. 1) show which classes of extremophiles can be potentially distinguished in a simple color-color diagram.
- The method can be used in prioritizing targets for follow up spectroscopy. An Earth-type rocky planet placed outside the contour region (Fig.2) should receive lower priority for follow up. The priority should increase towards the lower left corner in the color-color diagram due to higher probability of liquid water being indicated on the surface.
- Detailed spectroscopic studies will be needed to learn more on the potential habitability of rocky exoplanets.

Siddharth Hegde, email: hegde@mpia.de
Max Planck Institute for Astronomy, Koenigstuhl 17, 69117, Heidelberg. Germany.

