
Purpose: To figure out effects of mass-loss on population and composition of exoplanets
Method: To calculate thermal evolution and mass-loss evolution, 
            considering thermal atmospheric escape and Roche-lobe over flow 
Results: Mass-loss creates a Sub-Jupiter desert at < 0.04 AU, which is consistent with observation
            Observed trend of composition of Super-Earths can be explained by mass-loss
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1. Introduction

Sub-Jupiter desert at close-in orbits

We calculate evolution of planets with mass-loss and thermal cooling 
and show effects of mass-loss on population and composition

2. Model
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Discussion). The atmospheric envelope is in hydrostatic equilibrium and is divided into

an upper radiative equilibrium layer and a lower convective layer. The mass conservation

equation and the hydrostatic equation (Eq. 1 and Eq. 2) are solved for the whole envelope,

d ln r

dMr
= − 1

4πr3ρ
, (1)

d ln p

dMr
= − GMr

4πr4p
, (2)

where, r is the distance from the center of the planet, Mr is the enclosed mass at the

distance r, p is the pressure, ρ is the density, and G is the gravitational constant. To

calculate the temperature structure, an analytic solution of the plane-parallel two-stream

approximation (Guillot 2010) is used in the radiative equilibrium layer (Eq. 3),
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where T is the temperature, τ is the optical depth for outgoing long-wave radiation,

Tint is the intrinsic temperature, Tirr is the irradiation temperature defined with the

equilibrium temperature Teq = f 1/4Tirr, f is the redistribution factor (f = 1/4 for full

redestribution), and γ is the ratio of the short-wave to long-wave optical depth. We take

γ = 0.6
√

Tirr/2000K (following Guillot 2010), which provides a good match to detailed

calculations of hot Jupiter atmospheres (Fortney et al. 2008). The intrinsic temperature Tint

is defined by the intrinsic luminosity Lint = 4πR2
pσSBT 4, where Rp is the planetary radius

and σSB is the Stefan-Boltzmann constant. The optical depth τ is calculated using Eq. 4,

d ln τ

dMr
= − κ

4πr2τ
, (4)

where κ is the opacity for long-wave radiation. The plane-parallel approximation is only

valid when the radiative equilibrium layer is thin compared to the planetary radius. This

condition breaks down for highly irradiated atmospheres. Therefore we use the diffusion

approximation equation (Rogers et al. 2011) (Eq. 5) for the lower part of the radiative
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equilibrium layer where incoming stellar radiation is not effective (τ ! 1/
√

3γ),

dT

dr
= − 3κρ

16σSBT 3

Lint

4πr2
. (5)

In the lower convective layer, an adiabatic temperature structure (Eq. 6) is assumed,

d ln T

dMr
= − GMr

4πr4p

(∂ ln T

∂ ln p

)

s
, (6)

where S is the entropy. The boundary between the radiative equilibrium layer and the

convective equilibrium layer is determined by comparing the temperature lapse rate for a

radiative equilibrium and an adiabatic lapse rate. We use the data table of Saumon et al.

(1995) for the equation of state of solar composition gas and the Rosseland mean opacity

data table of Freedman et al. (2008) for gas opacity. Out of the range of the opacity table,

we use an power-law dependance Eq. 7 (following Rogers & Seager 2010),

κ = CpαT β, (7)

where log C = −7.32, α = 0.68, β = 0.45 with all quantities in SI units. The upper

boundary is defined as Rp at the layer where τ = 2/3 and the pressure at the layer is

obtained by Eq. 8,

κp =
2

3
g, (8)

where g is the gravity at the layer (following Rogers et al. 2011). The lower boundary is set

to the radius of the core Rcore. The equations are solved iteratively until a self-consistent

structure for the assumed set of planetary mass Mp, core mass Mcore, core radius Rcore,

irradiation temperature Tirr, and intrinsic temperature Tint is obtained. The observable

planetary radius Rp is obtained as a result.

Mass conservation

Hydrostatic

Radiative equilibrium or convective
(Guillot, 2010)

Equation of state
 H/He - Saumon et al. (1995)
 rock / iron - generalized Ryberg EOS, Wagner et al. (2011)

τ< 2/3 : isothermal

Mass-loss evolution

Rroche-lobe > RXUV thermal atmospheric escape

Rroche-lobe < RXUV Roche-lobe Overflow
　Envelope is lost until RXUV = Rroche-lobe (Kurokawa and Kaltenegger, 2013)

Thermal evolution

Mass-loss of exoplanets

Evolution calculation

3. Results
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Gas-rich Super-Earths have larger masses and far orbits
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HD 209458 b (1.13 MJupiter,  0.045AU)
hydrogen (Vidal-Madjar et al., 2003)

carbon, oxygen (Vidal-Madjar et al., 2004; Ben-Jaffel and Sona Hosseini, 2010)

silicon (Linsky et al., 2010)

HD 189733 b (0.8 MJupiter, 0.031AU)
hydrogen (Lecavelier Des Etangs et al., 2010)

WASP 12 b (1.41 MJupiter, 0.023AU)
metals (Fosseti et al., 2010)

55 Cancri b (0.8 MJupiter, 0.115AU)
hydrogen (Ehrenreich et al., 2012)

RXUV (p=1nbar)

radiative

convective

Rplanet (τ=2/3)

Population of Hot-Jupiters Composition of Super-Earths

Theoretical studies have shown that the mass-loss is possibly induced 
by XUV (X-ray + EUV) heating of upper atmosphere (e.g., Murray-Clay et al., 2009)

Structure calculation
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Envelope mass - radius relation

Envelope mass - radius relation of 10 MEarth core planets (left) and 20 MEarth core planets (right) at 0.015 AU
- Mass-loss is followed by expansion of the planet in Jupiter-mass regime = mass-loss is RUNAWAY
- The radius below 100 MEarth is strongly depends on core mass

10 MEarth core 30 MEarth core

S = 9,8,7,6 kB baryon-1 S = 9,8,7,6 kB baryon-1
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Evaporation of Hot-Jupiters

(left) Observed mass population and calculated mass for complete evaporation in 10 Gyr
(right) Observed radius population of confirmed planets and Kepler planet candidates
- Sub-Jupiter desert in mass population can be created by mass-loss if Hot-Jupiters have small cores (10 MEarth)
- Sub-Jupiter desert in radius population is also consistent with the mass-loss
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Composition of Super-Earths
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(left) Observed Super-Earths and theoretical mass-radius relation at 0.1 AU
(right) Observed Super-Earths and calculated orbital radius for complete evaporation of envelope in 10 Gyr
- All Super-Earths having thick envelopes are farther than the critical orbital radius
- Super-Earths closer than the critical orbital radius can be interpreted as rocky or icy bodies without envelope

Example of mass-loss evolution
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(left) Evolution of mass of planets having 10 MEarth core at 0.02 AU, 
circles denote when thermal escape regime changes and crosses denote when Roche-lobe overflow occurs
(right) Evolution of radius in the case of complete evaporation
- Mass -loss results in a dichotomy: complete evaporation or remaining almost all envelope
- Mass-loss is followed by expansion of the planet and Roche-lobe overflow
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4. Discussion

Results of Hot-Jupiters suggest that Hot-Jupiters tend to have small cores of 10 MEarth

- Efficient gas capture in formation phase
- Later migration in 108-9 year should be minor process to create Sub-Jupiter desert by evaporation

Results of Super-Earths suggest that the trend of composition is created by mass-loss
- Almost all Super-Earths once captured envelopes and lost the envelopes after formation
- Super-Earths inside the critical orbital radius having moderate radii sould be icy bodies, 
  which indicates migration after formation
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