

## Constraining the initial entropy of directly-detected exoplanets

Gabriel-Dominique Marleau<sup>1,2</sup> & Andrew Cumming<sup>2</sup>

<sup>1</sup> Max-Planck-Institut für Astronomie, Heidelberg, Germany <sup>2</sup> McGill University, Montréal, Québec, Canada

#### **Context: Hot start or cold start?**

Mordasini (2 12 Formation models (CA, GI) cannot predict post-formation, **initial entropies** (yet)  $\triangleright$  Shock details,  $\Sigma_{\text{solids}}$ , etc.  $\rightarrow$  range of  $S_i$  $[k_{B}$  $\triangleright$  Core accretion  $\Leftrightarrow$  cold start Gravitational instability  $\Leftrightarrow$  hot start 8 10  $M [M_{2}]$ 

 $\blacktriangleright$  ... hence **cannot** assume  $S_i$ 's when inferring M



### General $M(S_i)$ constraints

- Cooling tracks, schematically:
  - $\triangleright$  Stay at initial *S* until  $t \sim \tau_{cool}$
  - ▷ Follow hot-start track for  $t > \tau_{cool}$  $\star \tau_{\rm cool} \sim 10^8 {\rm \ yr}$  for low S
- ▶ Given L and t, get two  $M(S_i)$  branches:  $\triangleright$  Unique **hot-start mass**  $M_{hs}$ , high  $S_i$ Usual fitting of hot-start tracks





 $\Rightarrow$  Need to consider cooling tracks with arbitrary  $S_i$ 

#### In a nutshell

Use current brightness and age to **constrain** *M* and *S<sub>i</sub>* jointly:

- ▶ Make planet models with arbitrary entropy  $\rightarrow L = L(M, S(t))$
- Find needed  $S_i$  at each M to match L and age
- ★ Independent of formation process
- ► Many CA candidates expected soon (SPHERE, GPI, etc.)  $\rightarrow$  Statistical constraints on formation models

### **Planetary models**

► Interior models:

- Usual equations of stellar structure
- Schwarzschild criterion for convection
- Simple grey Eddington outer b.c.
- ▷ No solid core by default



- Uncertainty in  $M_{hs}$ : mainly from t  $(\Delta M/M \simeq \frac{1}{2}\Delta t/t)$
- $\triangleright$  Higher masses,  $\sim$  constant  $S_i$ 
  - Lower bound on S<sub>i</sub>
  - Almost flat because  $L_{\rm rz} \sim M \, 10^{1.5 \, S}$
  - Age uncertainties unimportant (Rather,  $\Delta S_i \simeq 0.7 \Delta \log_{10} L \sim 0.2$ )
- $\Rightarrow$  Mass **not constrained** from only L
- Possible mass information:
  - $\triangleright$  Upper limit to log g: somewhat rough
  - Dynamical stability: rare, difficult (many sensitive parameters)
  - Radial velocity: rare (weak signal)
  - \* If  $M_{\rm min} > M_{\rm hs}$ : very tight  $S_i$  constraints

#### Directly-imaged objects so far

Currently only few with low  $M_{\rm hs}$ 

- Cooling by "following the adiabats": (Hubbard 1977, Arras & Bildsten 2006)  $\triangleright$  Given  $\Delta t$ , find  $\Delta S$  with dS/dt from  $L = -M\langle T \rangle \frac{dS}{dt} + L_{\rm D}$  $\Rightarrow$  Rapidly move in S at given M
  - ★ Excellent agreement with classics



- ► Grid of models:
  - $\triangleright$  Consists of L(M, S) and  $\langle T \rangle (M, S)$
  - Shows simple luminosity scalings:

# $L_{\rm low} = 10^{-7.7} L_{\odot} \left(\frac{M}{M_{\rm J}}\right)^{0.7} 10^{1.3(S-7.5)}$



- Tentative features in t-L distribution:
  - ▷ Faintest detected *L* drops with *t*
  - $\triangleright$  'Gap' at  $10^{-4} L_{\odot}$ ,  $\sim 50$  Myr: predicted by cooling tracks?
  - ★ Need to assess statiscal significance  $\rightarrow$  Easier with uniform surveys
- Some consistent with D 'flashes'...  $\rightarrow$  Marleau & Cumming, in prep.



Based on Neuhäuser & Schmidt (2012): (1) GG Tau Bb, (2) TWA 5 B, (3) GJ 417 BC, (4) GSC 8047 B/b, (5) DH Tau B/b, (6) GQ Lup b, (7) 2M1207 b, (8) AB Pic B/b, (9) LP 261-75 B/b, (10) HD 203030 B/b, (11) HN Peg B/b, (12) CT Cha b, (13, 14, 15, 16) HR 8799 bcde, (17) Wolf 940 B/b, (18) G 196-3 B/b, (19)  $\beta$  Pic b, (20) RXJ1609 B/b, (21) PZ Tel B/b, (22) Ross 458 C, (23) GSC 6214 B/b, (24) CD-35 2722 B/b, (25) HIP 78530 B/b, (26) SR 12 C, (27) HR 7329 B/b, (28) Fomalhaut b, (29) HD 95086 b, (30) 2M0122 b, (31) GJ 504 b

### **Application:** $\beta$ **Pic b**

Have log  $L/L_{\odot} = -3.87 \pm 0.08$ ,  $t_{\text{host star}} = 12^{+8}_{-4}$  Myr,  $M \leq 12 M_{\text{J}}$ 

(Bonnefoy et al. 2013, Zuckerman et al. 2001, Lagrange et al. 2012)

 $\blacktriangleright$  Recover hot-start mass: 9.5  $\pm$  2.5  $M_{\rm H}$ 



• Uncertain  $S_i \Rightarrow$  need to **consider arbitrary**  $S_i$  to interpret direct detections ▶ Given L and t, find joint  $M(S_i)$  constraints  $\Rightarrow$  lower bound on  $S_i$ Can use direct detections to constrain formation models  $\star$ 

http://www.mpia.de/~marleau



8 Myr

111111' 12 Myr

20