OPEN CLUSTERS AS LABORATORIES FOR

GIANT PLANET MIGRATION

Samuel N. Quinn^{1,2}, Russel J. White¹, David W. Latham³

¹Georgia State University, ²NSF Graduate Fellow, ³Harvard-Smithsonian Center for Astrophysics

Based on our ongoing, precise radial-velocity survey of open clusters, we present here:

- A. The discovery of 2 hot Jupiters in Praesepe (578 Myr)
- **B.** The discovery of an eccentric hot Jupiter in the Hyades (625 Myr)
- **C.** Evidence for dynamical scattering during giant planet migration

A. Two 'b's in the Beehive

B. An Eccentric Hyades Planet

Above: Orbital solutions (panels a and b) of the first two hot Jupiters discovered in an open cluster (Quinn et al. 2012). Although the systems are young (578 Myr), the orbital periods – 4.4 and 2.1 days – are short enough that tidal circularization should have already occurred, and the measured eccentricity is consistent with 0.

C. Observational Signature of Dynamical Scattering

Above: Orbital solution (c) of our recently discovered hot Jupiter in the Hyades (Quinn et al., in prep). The eccentricity is non-zero, as seen in the posterior distribution of the Markov Chain Monte Carlo (d), which is not surprising given the longer orbital period (6.1 days) and youth of the system (625 Myr).

Acknowledgments

Spectra were obtained using the Tillinghast Reflector Echelle Spectrograph (TRES) mounted on the 60" Tillinghast Reflector at FLWO in AZ.

For their contributions to this work, we thank:

Planet age versus circularization timescale for short period (P < 10 d) massive ($M > 0.3 M_1$) planets, assuming a tidal quality factor $Q_p = 10^5$ for all planets. Along the solid dark line, age = τ_{cir} ; points to the left of the line are expected to have undergone circularization. We also plot a shaded region to show how this boundary shifts for the range of Q_p values consistent with observations of the Jupiter-Io interaction (see Yoder & Peale 1981). The data points are colored according to their eccentricities, and our Hyades planet is indicated by the green arrow. It appears very likely that its non-zero eccentricity is a remnant of its migration process, implying that dynamical scattering has played a role. Very few hot Jupiters have $\tau_{cir} > 1$ Gyr, so young planets offer an excellent opportunity to directly observe the dynamical effects of migration.

Notes:

Planet ages, stellar properties, and orbital parameters were obtained from The Extrasolar Planets Encyclopaedia (www.exoplanet.eu)

Radii of non-transiting planets were estimated from the mass-radius relations of Weiss et al. (2013): $\frac{R_P}{R_F} \approx 2.45 \left(\frac{M_P}{M_E}\right)^{-0.057} \left(\frac{F}{\text{erg s}^{-1} \text{ cm}^{-2}}\right)^{-0.057}$

Circularization timescale was calculated according to Adams & Laughlin (2006), eq. (3): $\tau_{cir} \approx 1.6 \text{ Gyr} \left(\frac{Q_P}{10^6}\right) \left(\frac{M_*}{M_o}\right)^{-1.5} \left(\frac{R_P}{R_I}\right)^{-5} \left(\frac{a}{0.05 \text{ AU}}\right)^{6.5}$

• Gábor Fűrész, TRES hardware improvements • Lars A. Buchhave, TRES reduction software • TRES Observers Perry Berlind, Michael C. Calkins, Gilbert A. Esquerdo, Allyson Bieryla • Robert P. Stefanik, target list

This material is based upon work supported by the NSF GRFP (PI: SNQ). We also acknowledge support through the NASA Origins of Solar Systems grant #10-OSS10-0093 (PI: RJW), and by NASA's *Kepler* mission under Cooperative Agreement NNX11AB99A with SAO (PI: DWL).

