

Lessons from Brown Dwarf Science: Signatures of Youth in NIR Spectra

Kelle Cruz 🤟 @kellecruz Hunter College, CUNY & AMNH

Adric Riedel

Late-M and L Dwarf Age & Spectral Sequences

- Young L dwarfs have markedly different low-resolution NIR spectra than field L dwarfs, especially in J and H bands.
- These features are displayed in the late-M and L dwarf members of three young kinematic associations (shown below).
- Triangular H-band shape, weak FeH absorption, strong VO absorption are evident in the young objects.
- Hallmarks of youth remain prominent up to ~120 My

Reddening Possibly Due to **Dust Haze of Small Grains**

NORMAL L DWARF

- We hypothesize that reddening of L dwarf spectra is caused by a "dust haze" (green) above the normal cloud deck.
- We compare normal and red L dwarf spectra to infer the haze spectrum.
- Mie theory is used to reproduce the observed reddening and constrain the properties of the dust haze.

See Hiranaka Poster 2K001 for more details

Best Normalization Method for NIR Spectra

New normalization method for NIR L Dwarf spectra:

- Normalize J, H, and K bands separately using the entire band.
- Minimizes reddening effects of gravity-sensitive clouds.
- Reveals effects temperature, metallicity, binarity.

