

Environmental Effects on Planet Formation in Cluster Gas Expulsion Phase

M. Steinhausen, S. Pfalzner

Max-Planck-Institut für Radioastronomie Bonn, Germany

How the expulsion of the residual gas influences the interpretation of observed cluster disc fractions

INTRODUCTION

Μοτινατιον

Possible mechanisms for disc destruction:

Internal processes

- Dust growth (D'Alessio et al. 2006)
- Accretion (Balbus & Hawley 2002)
- Viscous spread (Shu et al. 1987)

External processes

- Photoevaporation (Scally & Clarke 2001)
- Gravitational interactions (Pfalzner et al. 2004, Olczak et al. 2006)

METHOD AND SETUP

- NBODY6 simulations
- Simulating most massive clusters $(> 10^4 M_{\odot})$ in Solar neighbourhood
- King density profile $W_0 = 9$
- Standard Kroupa (2001) IMF
- 30% star formation efficiency

- 0 2 4 0 8 10 12 14 cluster age [Myr]
- Stars initially surrounded by circumstellar disc
- Discs seem to disappear with time
- Effect depends on stellar density

1.

Effect of cluster expansion after gas expulsion so far neglected

- Instantaneous gas expulsion after 1 Myr
- Neglect primordial binaries and stellar evolution

GAS EXPULSION PROCESS

10

[pc]

- 1. Stars are initially embedded in natal gas
- 2. Residual gas is expelled by stellar feedback of massive stars

3. Due to lower binding energy stars separate in **unbound** and **bound** population

BOUND STARS

UNBOUND STARS

3.

- Preferentially stars from sparse cluster outskirts become unbound
- Only \approx **10% of stars remain bound** as cluster

90% of stars are expelled into the field

- Stars from **dense, innermost regions** (< 0.2 pc) characterise observed disc frequencies of remnant clusters
- Density drops \Rightarrow **Internal processes dominate** disc destruction after expulsion

Remnant cluster spreads rapidly by a factor of 10

CONCLUSION

Field star population likely higher disc frequency than observed in clusters

Field stars more suitable for forming planetary systems

100

Rapid expansion mimics drop in observed cluster disc frequency

Observed frequency strong lower limit for disc survival

