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PROBLEM: EQUATIONS: POINT PARTICLES:

Early dust growth in protoplanetary disks Particles are entrained by gas drag with stopping time Tp: As a further complication, dust grains in
occurs collisionally, and, for a broad range of protoplanetary disks are tiny compared with the
dust sizes, is driven by turbulent flows. The 4 turbulent motions. They must be treated as point
rate of growth, and the final dust grain size aup (t) Uy (t) — V(wpa t) particles. To be able to make statements

distribution, depend sensitively on the Ot about the turbulence induced collisions we need
velocities and rates of these collisions. P PPINY to be able to study the turbulence induced

collision parameters in the limit of dust grain

Estimating the velocity scale at which turbulence separation going to zero.
induced collisions occur is straightforward, but To enable our study of dust grain collisions in turbulence,

inadequate to the task: using a single we used artificial turbulence (velocity equation below),

characteristic velocity will result in a bouncing- which side-stepped the resolution limitations. INERTIAL RANGE:
barrier size at which dust grain collisions all result m,n=8,3

in bouncing. In reality, there is a range of collision

velocities, and dust grains that collide at the low \ (33, t) — g \/§amn (t)vm@mn COS [kmn - L+ ¢mn (t)] .DUSt 2 HES VOr Wi DOUNETY) [ ©XpEcizt) 1o ok
. . important are too small/large to care about the
end can stick and grow (see Windmark 2012).

m,n=0,1 largest/smallest scales of the turbulence: one
needs a large inertial range, which is out of reach.

We analyzed the problem numerically, and If interested, ask me what the terms above mean and why

generated analytical fits for inclusion in future they were chosen.
dust coaggulation studies.
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IDENTICAL STOPPING TIMES (Hubbard 2012) DIFFERENT STOPPING TIMES (Hubbard 2013)
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extremely strongly Dust grains with identical stopping times

on particle separation. , > see divergent clustering.
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Fitting collisional velocity probability distributions: Fitting collisional velocity probability distributions
identical stopping times (see Hubbard 2012 for details) Different stopping times (see Hubbard 2013 for details)
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Except at very low collisional velocities, _ P P For £>0.9 (about a 10-fold mass 010 e=3
the collisional velocity probability difference) the collisional velocity * 0.01
distribution for particle pairs with identical probability distribution is - - - - -
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