
Fitting collisional velocity probability distributions:
  identical stopping times (see Hubbard 2012 for details)

Except at very low collisional velocities,
the collisional velocity probability
distribution for particle pairs with identical
stopping times is well fit by the sum
of two exponentials:
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 PROBLEM:
Early dust growth in protoplanetary disks 
occurs collisionally, and, for a broad range of 
dust sizes, is driven by turbulent flows. The 
rate of growth, and the final dust grain size 
distribution, depend sensitively on the 
velocities and rates of these collisions.

Estimating the velocity scale at which turbulence 
induced collisions occur is straightforward, but 
inadequate to the task: using a single 
characteristic velocity will result in a bouncing-
barrier size at which dust grain collisions all result 
in bouncing. In reality, there is a range of collision 
velocities, and dust grains that collide at the low 
end can stick and grow (see Windmark 2012).

We analyzed the problem numerically, and 
generated analytical fits for inclusion in future 
dust coaggulation studies.

 POINT PARTICLES:
As a further complication, dust grains in 
protoplanetary disks are tiny compared with the 
turbulent motions. They must be treated as point 
particles. To be able to make statements
about the turbulence induced collisions we need 
to be able to study the turbulence induced 
collision parameters in the limit of dust grain 
separation going to zero.

 INERTIAL RANGE:
Dust grains for which bouncing is expected to be 
important are too small/large to care about the 
largest/smallest scales of the turbulence: one 
needs a large inertial range, which is out of reach.

 IDENTICAL STOPPING TIMES (Hubbard 2012)

Dust grains with identical stopping times are highly 
correlated.
High velocity collision
statistics depend only
weakly on particle
separation.

Low velocity collision
statistics depend
extremely strongly
on particle separation.

We confirm very strong
clustering of particles
at small separations.

BUT the clusters have
very small internal
velocity dispersions
which are linear in
cluster size.

That means that there
are no intra-cluster
dust collisions.  Clusters
can still collide with other clusters.

As shown above for one of the fit 
parameters, the parameters
reach a steady limit as the separation 
of the dust grains approaches 0: the 
results hold for point particles.

 DIFFERENT STOPPING TIMES (Hubbard 2013)

We measure the stopping time ratio
with ε.  Note that the mass ratio is
(ε+1)3.

Dust grains with identical stopping times
see divergent clustering.

By comparison, particles with different
stopping times see finite clustering.

Clustering is stronger for particles
with more similar stopping times.

Unless the dust size distribution
is very tightly peaked, turbulent
clustering is unlikely to create
dense enough clusters to trigger
the streaming instability of Johansen
et. al. 2007.
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a distribution that was both lower in velocity than previ-
ously expected by a factor of approximately five, and very
non-Maxwellian. Indeed, in that case the collisional ve-
locity distribution had a pure exponentially decaying tail,
and the particle pair velocity probability distribution ap-
peared to diverge at low relative velocity. In this paper
we extend that analysis to include polydisperse popula-
tions (collisions between grains of differing sizes), going
from gas-dust frictional stopping time ratios of 17/16 to
4. The stopping time scales with the grain radius and so
the cube root of the mass, so our largest stopping time
ratio is equivalent to a mass ratio of 64, large enough
for mass transfer to occur. It is also large enough that
we clearly approach an asymptotic limit as the two dust
grains become uncorrelated.
Our goals are two-fold. Firstly, we simply wish to un-

derstand any features and behavior of the collision ve-
locity probability distribution as there is no analytical
treatment that can handle long time correlations of sim-
ilar sized dust grains, and such correlations were a domi-
nant feature in the monodisperse case. Secondly, we wish
to develop a master fit for the collision velocity probabil-
ity distribution as a function only of the relative size of
the dust grains. Such a fit is of clear utility for any dust
grain collision growth model such as used in Windmark
et al. (2012) and Garaud et al. (2012). We should note
that our master fit only applies in the limit of the dust
grains being well contained within the turbulent cascade,
as will be discussed below.
In Section 2, we discuss our turbulence model and how

we extract the collisional diagnostics, going into greater
detail on the latter in the appendix. In Section 3, we
perform initial analysis of our results, extracting cluster-
ing information as well as the most common turbulent
collisional speed. In Section 4 we examine the shapes of
the collisional velocity probability distributions and cre-
ate fits to them which can be used in further modeling
of dust coagulation. We conclude in Section 5. In the
Appendix we include a detailed procedure for extracting
dust collisional diagnostics from numerical simulations.

2. METHODS

As in Paper I, we evolve particles in a semi-analytic
model for turbulence to extract collisional velocity prob-
ability distributions. We do this for a range of stopping
time ratios, constructing fits to the collisional velocity
probability distribution for each ratio, with a greater em-
phasis on identifying features in the distributions than
pure quality of fit. Finally, we construct a fit to the fits
to arrive at a final fit formula of the collisional velocity
distribution with a small set of tunable parameters that
can easily to used in further particle coagulation studies
such as Windmark et al. (2012).

2.1. Particles

We insert 106 particles into the synthetic turbulence
field. Writing u for a dust particle’s velocity and v for
the gas velocity at the particle’s position, the particle’s
equation of motion is

∂u

∂t
= −

u− v

τ
, (1)

where τ is the particle’s stopping time. Note that τ is
proportional to dust grain radius for constant grain mate-

rial density. All our simulations split the particles evenly
between two species that differ only through their stop-
ping times. We refer to the larger stopping time as τ1
and the smaller as τ2. Further, we define

ε ≡
τ1
τ2

− 1 ≥ 0 (2)

as the measure of the stopping time ratio.
The collisional properties of a dust grain pair in in-

compressible turbulence are expected to scale with the
stopping time of the largest grain because the shorter
stopping time grains are more tightly bound to the gas
and particle collisions require deviations from the incom-
pressible gas velocity. Further, dust is expected to couple
(for collisional purposes) most strongly with turbulence
with turnover times tt = τ . This is because if the turbu-
lence has a turnover time tt $ τ the dust grains will be
completely entrained by the flow on a time scale τ and
will barely deviate from the motion of the gas; while if
the turbulence turnover time tt % τ the dust grains will
not have time to respond to the gas motion. Turbulent
motions with timescales tt = τ are therefore Goldilocks
motions, both varying rapidly enough that the particle
motion can deviate from that of the gas, and varying
slowly enough that the particle motion is measurably af-
fected.
We therefore denote up and kp as the velocity scale

and wavenumber of the turbulence with turnover time
1/kpup = τ1 = tt(kp). We denote the associated veloc-
ity scale as up (a dust velocity) rather than vp (a gas
velocity) because this is the velocity scale we will use
to normalize our dust collisional velocities. When kp is
not actually included in our turbulence model (which is
discrete in k), up is determined by interpolating the Kol-
mogorov spectrum.
We consider modest ε ! 3 due to both practical con-

siderations (numerical resources) and because the larger
ε case is expected to be straightforward. That is be-
cause once the stopping time ratio becomes large, the
two populations of dust grains become uncorrelated, and,
from the perspective of the particles with stopping time
τ1 $ τ2, the grains with stopping time τ2 are completely
bound to the gas motion and so indistinguishable from
the gas. This means that the collisional behavior will
have a well defined asymptotic behavior, which we find.

2.2. Synthetic turbulence – Motivation

Since Kolmogorov (1941), turbulence has been under-
stood as a cascade of kinetic energy from one lengths
scale to a shorter one. The largest length scale is the
one associated with the driving source of the turbulence,

TABLE 1
Runs

Run ε τ1 τ2 tls/τ1 τ2/tss
A 0.0625 2.01875 1.9 5.0 7.7
B 0.125 1.96875 1.75 5.1 7.1
C 0.25 2 1.6 5 6.5
D 0.375 2.3375 1.7 4.3 6.9
E 0.5 2.25 1.5 4.4 6.0
F 0.9 2.47 1.3 4.0 5.2
G 1.25 2.7 1.2 3.7 4.8
H 1.4 2.88 1.2 3.5 4.8
I 2 3 1 3.3 4.0
J 2.5 3.5 1 2.9 4.0
K 3 4 1 2.5 4.0

For ε<0.9 (about a 10-fold 
mass difference) the collisional 
velocity probability distribution is 
not Maxwellian.

Velocity probability distribution

Pr
ob

ab
ili

ty
de

ns
ity Three different separations

Same three separations

Zoom Scaled collision speed

Zoom of low collision speeds

Pr
ob

ab
ili

ty
de

ns
ity

Scaled collision speed

Same three separations

M
os

t 
pr

ob
ab

le
co

lli
si

on
 s

pe
ed

Scaled separation

Velocity linear with 
separation

 EQUATIONS:
Particles are entrained by gas drag with stopping time τp:"

To enable our study of dust grain collisions in turbulence, 
we used artificial turbulence (velocity equation below), 
which side-stepped the resolution limitations. 

If interested, ask me what the terms above mean and why 
they were chosen.

3

while the smallest length scale is determined by the vis-
cous dissipation of the turbulent energy into heat. Be-
tween those two loosely defined scales lies the inertial
range. In the inertial range the turbulence is scale free,
independent of the details of the forcing and of the dis-
sipation: the only parameter is the energy cascade rate.
The Kolmogorov power spectrum of v(k) ∝ k−1/3 de-
rived from the simplest dimensional analysis of the prob-
lem fits experimental data well. Significantly, in proto-
planetary disks, the inertial range is believed to be large
in that the ratio of the time scale tls associated with the
largest scale motions to the time scale tss associated with
the smallest scale motions is large: tls " tss.
From the hypothesis that particle-particle collisional

properties are determined by turbulence with tt ∼ τ1,
and the consideration of modest ε it follows that there
are five regimes for turbulence induced particle-particle
collisions, which can be describe by relating τ to the
bounding turbulent time scales, tls and tss. The regimes
are:

• Particle stopping times much longer than the
longest turbulent timescale, or τ " tls: This
regime may be accessible to direct simulation of the
turbulence using Navier-Stokes with current nu-
merical resources, although the particles will move
significant distances so the numerical domains will
have to be large.

• Particle stopping times comparable to the longest
turbulent timescale, or τ ∼ tls: This regime should
be accessible to direct numerical simulation, al-
though the applicability to protoplanetary disks
may be complicated by rapid particle drift through
the disk, and the results may depend sensitively on
the turbulent driving mechanism.

• Particle stopping times comparable to the shortest
turbulent time scale, or τ ∼ tss: This regime is
numerically accessible for hydrodynamical simula-
tions, although the dissipation must be well cap-
tured.

• Particle stopping times much shorter than the
shortest turbulent time scale τ $ tss: This regime
is numerically accessible.

• Particle stopping times much longer than the short-
est turbulent time scale, but also much shorter than
the longest turbulent time scale, or tls " τ " tss:
This regime is where the bouncing/fragmentation
barriers are believed to lie, but is numerically inac-
cessible because such an inertial regime is beyond
current numerical resources.

We are interested in the last regime, because full col-
lisional velocity probability distributions are interesting
precisely when collisions at different speeds have differ-
ent outcomes. This regime is, however, not one that can
currently be achieved through direct numerical simula-
tion. This is our motivation for using semi-analytical
synthetic turbulence: the synthetic turbulent cascade
perfectly matches the Kolmogorov spectrum that fits ex-
periment well while having a large inertial range and be-
ing numerically feasible.

2.3. Synthetic turbulence – Model

Our turbulence field uses the same approach as in Pa-
per I: a synthetic turbulence field that matches the power
spectrum of the inertial range of Kolmogorov turbulence
(Kolmogorov 1941). In other words, while the absolute
scale of the kinetic energy is arbitrary, the relative en-
ergy in the motions at two given scales exactly matches
that of perfect Kolmogorov turbulence, which matches
experiment well.
In this model, the turbulence is binned logarithmically

in wave-vector space. A region of wave-vector space with
|k| ∈ kref ± δk is a spherical shell, so we refer to the bins
as such, and the shell m is associated with |k| = 2m.
Each shell m is assigned a trio of wave-vectors kmn of
the appropriate magnitude. The gas velocity associated
with each wave-vector kmn is along a velocity unit vector
v̂mn ⊥ kmn, so that the final velocity field is incompress-
ible.
In Paper I we used multiple methods for introducing

time variation in the velocity field, including rotating the
projection of the energy in shell m onto the trio of wave-
vectors and varying the phase factor. In this paper, we
will use the rotation of the projection, along with a slow
variation in phase. The rotation of the projection occurs
as a random walk of length 2π over an eddy turnover
time tm = 1/vmkm, and allows the velocity at a specific
position to rotate in space, avoiding steady velocity pat-
terns. The phase variation takes the form of a random
walk of the phase φmn of length π over 3 eddy turnover
times. The final gas velocity field is

V (x, t) =
m,n=8,3
∑

m,n=0,1

√
2amn(t)vmv̂mn cos [kmn · x+ φmn(t)] ,

(3)

where vm is the velocity associated with the shell m and
am(t) is a unit vector that rotates as a random walk
over the turbulent time scale tm. We set v0 = 0.1 in
code units. We refer the reader to Paper I for a more
complete description and derivation. We will discuss the
need for the phase variation in Section 2.5.
In Paper I, we found that the relative particle/gas mo-

tion in our model had reasonable statistics compared
to predictions (note that particle/gas statistics are not
yet well constrained as observed clustering immediately
implies non-trivial particle/gas correlations, Pan et al.
2011); we also found that the particles were transported
away from their positions according to a random walk,
appropriate for turbulent particle diffusion. In this work,
we also find in Section 3.1 that the relative motion of par-
ticles with large stopping time ratios do approach naive
expectations of uncorrelated motion.
In all simulations in this paper, we include shells with

m ranging from 0 to 8 (km = 2m extending from 1
through 256). The smallest wavenumber, km=0 = 1, cor-
responds to our box scale L = 2π. We set tls = 10 and
tss = 0.25 in code units, where here ls and ss refer to the
largest and smallest eddy scales included in the simula-
tion, or k = 1, 256. Extending the Kolmogorov spectrum
then, there is a k value associated with any tls > tt > tss
such that tt = k−1v(k)−1, although that k value gener-
ally does not fall on one of the values associated with our
discrete shells. In those cases we simply extrapolate the
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turbulence.
In this work, we put particles into a simulated Kol-

mogorov cascade to determine the clustering and colli-
sional velocity probability distributions that can be ex-
pected, as well as how much of the inertial range must
be tracked in order to determine particle collisional be-
havior. This approach is very similar to that of Bec et
al. (2005), differing mainly in the focus on the collisional
velocities, with unexpected conclusions.
We sketch the dust transport and collisional behaviors

we expect to see in Section 2 and in Section 3 we define on
our numerical model. In Section 4 we investigate a par-
ticular base case to establish what our diagnostics should
be, which we apply to a broader set of cases in Section 5.
We discuss our results and conclude in Section 6.

2. ANTICIPATED PROCESSES

The motion of inertial particles in a fluid is determined
by the friction between the particles and the fluid. The
resulting drag force entrains the particles along the fluid
motion. We initialize our particles with a frictional stop-
ping time τp, so that the equation for a particle’s velocity
up is determined by

∂up(t)

∂t
= −

up(t)− V (xp, t)

τp
, (1)

where V (xp, t) is the gas velocity as the particle’s posi-
tion xp. Particles with finite τp are referred to as “iner-
tial” and their motion deviates from that of the gas as
long the the particles are not neutrally buoyant (ie. as
long as ρdust "= ρgas). Here, we will always be assuming
that ρdust # ρgas. It is this deviation that allows even
point-particle grains to collide in incompressible flows.
Studies of turbulent particle transport use the parti-

cles’ Stokes number St to non-dimensionalize τp. This is
most often done through St ≡ τp/τη where τη is the tur-
bulent turnover time at the smallest (Kolmogorov) scale.
When investigating protoplanetary disks however, where
turbulent scales are not precisely known, it is not un-
common to instead define St = τΩK where ΩK is the
Keplerian orbital frequency. A further implicit assump-
tion in such cases is that the turnover time of the largest
eddies is τls % Ω−1

K (Dubrulle 1992), an assumption born
out in simulations by Carballido et al. (2008), where a
value of St = 1 by this definition marked a change in
turbulent particle transport behavior.

2.1. Collisions

Much of astrophysical turbulent dust collision work fol-
lows the approach of Völk et al. (1980); Markiewicz et al.
(1991); Cuzzi & Hogan (2003); see Ormel & Cuzzi (2007)
for a recent analysis in those terms. This approach de-
fines two classes of eddies, Class I large scale eddies and
Class II small scale eddies. The former have large veloc-
ities and time scales, and so can transport dust grains
significant distances: they dominate the turbulent diffu-
sion of dust throughout a disk or atmosphere. On the
other hand, they change slowly enough in both space
(compared with dust stopping lengths) and time (com-
pared with τp) that nearby dust grains,which could col-
lide, see nearly identical gas motion. As a result, Class
I eddies can affect the collisional behavior of dust grains
only slightly. Class II eddies on the other hand vary

rapidly both compared to the frictional stopping time of
the dust grains and their stopping length. Accordingly,
these eddies can effect even nearby dust grains differ-
ently, driving collisions. However, their short time and
length-scales mean that they provide only weak large-
scale transport.
Dropping the contribution of Class I eddies for col-

lisions between identical dust grains, Ormel & Cuzzi
(2007) find an rms collisional velocity of

u2
col = 2v2p. (2)

where vg is the turbulent velocity of eddies with a
turnover time equal to the dust’s stopping time (ie. our
vp as defined in Section 3.2). An important assumption
is that the relative motion of particles approaches a finite
limiting value as their separation goes to zero, which is
possible for inertial particles (τp "= 0) whose motion must
deviate from that of the gas. Such behavior is seen in Bec
et al. (2010). This analytical approach is however lim-
ited in its ability to handle very long time-correlations
between dust grains. More recent results on turbulent
clustering suggest that this drawback might be signifi-
cant.

2.2. Clustering

Turbulent clustering of inertial particles can be under-
stood by noting that a rotating vortex will centrifugally
eject particles, trapping them in the regions between vor-
tices. Recent work (Pan et al. 2011) found evidence for
strong clustering for particles with modest St, i.e. parti-
cles reasonably well coupled to turbulence at the dissipa-
tion scale. This clustering was observed to decrease with
increasing (and decreasing) St. It should nonetheless be
noted that their ability to track the clustering of parti-
cles deeply imbedded in a turbulent cascade (τp # τss
but also τp & τls) is limited by the difficulty of sim-
ulating a large inertial range. Clustering, especially if
it exists for St > 1, might greatly increase the collision
rates between particles by generating regions of enhanced
particle number density.
Another interesting process due to clustering is the

streaming instability. In protoplanetary disks, gas orbits
in a sub-Keplerian fashion due to the outwards pointing
pressure force. As a result, particles, which would natu-
rally orbit in a Keplerian fashion, feel a headwind. Simi-
larly to drafting on highways or in bicycle races, clumps
of particles can then form which are dense enough to
backreact on the gas (Cuzzi et al. 2001; Youdin & Good-
man 2005; Johansen et al. 2007; Lewellen et al. 2008).

3. NUMERICAL SETUP

We use the Pencil Code1 to track the motion of par-
ticles in a simulated turbulent Kolmogorov cascade (Kol-
mogorov 1941). Our turbulence model is inspired by the
study of Shell models for turbulence such as the GOY
model (Ohkitani & Yamada 1989), but lacks the inter-
mittency of the GOY model. While this is a deficit that
must eventually be remedied, it should be noted that
the magnitude of the velocity field in a GOY model is
strongly fluctuating in time. A first study with a time-
independent energy spectrum is both needed to establish

1 http://pencil-code.googlecode.com
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Fig. 3.— Top Panel: Effective density enhancement ρ(R) for a
range of R (black/solid), along with their linear fits (red/dashed).
As in Figure 2 there are well defined limits as R → 0, which is not
the case for ε = 0. From top to bottom are runs A-K, in order.
The inner cut-off is where the pair counts become unreliable for
the fitting purposes. Bottom Panel: Limit R → 0 of ρ(R) as a
function of ε. The divergence is weaker than ε−0.77.

around itself (Pan et al. 2011, Paper I). If such cluster-
ing persists for large ranges in the stopping time ratio,
the streaming instability or gravitational collapse could
be triggered (Goldreich & Ward 1973; Johansen et al.
2006, 2007; Shi & Chiang 2013). We should note here
that the vortices we consider are too small to feel any
Coriolis forces that exist in a protoplanetary accretion
disk. Large anti-cyclonic vortices in accretion disks are
known to concentrate particles through orbital interac-
tions(Barge & Sommeria 1995; Johansen et al. 2004), but
such effects require both rotation (which we do not in-
clude) and large enough length scales for orbital dynam-
ics to play a major role (which we do not consider).
In Figure 3 we show the clustering, i.e. ρ(R), as a func-

tion of R and ε. In the case where τ1 = τ2, it has been
found to behave as a power-law in R with an exponent
µ ∼ −0.6 (Pan et al. 2011). Unlike that case, the density
is not a power-law in R when τ1 #= τ2, instead having a
well defined limit as R → 0. Further, the clustering de-
creases as ε increases, as would be expected: the position
of particles with significantly different stopping times are
less correlated than those of particles with similar stop-
ping times.
From Figure 3 it is clear that the clustering diverges as

ε → 0, as has been previously found for ε = 0. However,
because the clustering scales more weakly than ε−1 it is
also clear, when combining that result with Figure 2, that
a net collision rate estimate uM (ε)ρ(ε) does not diverge
as ε → 0, which was also found in Paper I. Nonetheless,
the confirmation of particle clustering even for different

(but similar) stopping times continues to motivate the
consideration of physics relevant to mostly-collisionless
clusters of dust grains, which could otherwise have been
dismissed as a result specific to the monodisperse case.
It should be noted that the relatively weak power-law

dependency on ε for the clustering implies that the ex-
treme levels of clustering predicted will not generate high
dust-to-gas mass ratio clumps. For there to be significant
direct back-reaction of the dust on the gas flow, the dust-
to-gas mass ratio needs to be near unity. If the volume
averaged dust-to-gas ratio is the canonical 0.01, this im-
plies a 100–fold local increase in the dust density. To get
a density enhancement over background of 100 through
turbulent clustering, we estimate a maximum δε range of
0.29 δε−0.77 = 100, or δε = 5×10−4, or a maximum mass
ratio of 1.5×10−3. As long as the dust is not tightly con-
centrated at a specific grain size, the enhancement to the
dust-to-gas mass ratio from turbulent clustering will be
well below 100, and we do not have any reason to expect
turbulent concentration to directly alter the character
of the turbulence, meaning that our application of syn-
thetic turbulence with no back-reaction possible is not
immediately self-inconsistent. The streaming instability
becomes significant for dust-to-gas mass ratios of about
0.02 (Johansen et al. 2009), double the canonical disk-
averaged value. This would be expected for δε ! 0.08, or
a maximum mass ratio of 1.25. Triggering the streaming
instability through turbulent concentration may there-
fore be possible, but it will require almost all the dust
being found in grains of very nearly the same size.

4. VELOCITY DISTRIBUTION FIT

It is now well known that the outcome of a collision be-
tween two dust grains can depend on the velocity of the
collision (Güttler et al. 2010). This means that studies
of collisional dust growth in protoplanetary disks need
to include estimates of the rates and collisional velocity
probabilities, a step recently begun by Windmark et al.
(2012) and Garaud et al. (2012). However, those stud-
ies assumed Maxwellian collisional velocity distributions,
which is appropriate only for uncorrelated motion. The
clustering data of Figure 3 immediately implies that for
modest ε, a Maxwellian fit is inappropriate.
In Figure 4, top panel, we show the normalized particle

pair densities ρ(R0/4, u) as a function of up for our runs.
While R0kp is not a constant, and so we are not cor-
rectly normalizing our lengthscales to recover perfectly
scale free behavior, we can nonetheless see a change in
behavior as the stopping time ratio τ1/τ2 increases, go-
ing from a sharply peaked distribution around a rela-
tively low velocity to a much broader distribution around
a significantly higher peak. We also have a qualitative
change in the behavior of the high velocity tails, and the
existence or non-existence of a low velocity bulge, which
occurs between ε = 0.5 and ε = 0.9. Already by ε " 2
the high velocity tail appears to converge.
As alluded to in Section 2.5, if a particle pair has rel-

ative velocity u, then they can close a distance % ∼ τ1u.
This means that the requirement of taking limits as
R → 0 is less stringent for higher relative velocities. We
illustrate this in the bottom panel of Figure 4, where we
show results from Run B for R = R0/10 and R0, along

(linear) scaled separation
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Fitting collisional velocity probability distributions
  Different stopping times (see Hubbard 2013 for details)

For ε>0.9 (about a 10-fold mass
difference) the collisional velocity 
probability distribution is
nearly Maxwellian.
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