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Abstract
	

 To understand the structure evolution of dust aggregates is a key in the 
planetesimal formation. Dust grains become fluffy by coagulation in 
protoplanetary disks. However, once they become fluffy, they are not sufficiently 
compressed by collisional compression to form compact planetesimals 
(Okuzumi et al. 2012, ApJ, 752, 106). Thus, some other compression 
mechanisms are required to form planetesimals.
	

 We investigate the static compression of highly porous aggregates. First, we 
derive the compressive strength by numerical N-body simulations (Kataoka et 
al. 2013, A&A, 554, 4). Then, we apply the strength to protoplanetary disks, 
supposing that the highly porous aggregates can be quiasi-statically compressed 
by ram pressure of the disk gas and the self gravity. As a result, we find the 
pathway of the dust structure evolution from dust grains via fluffy aggregates to 
compact planetesimals. Moreover, we find that the fluffy aggregates overcome 
the barriers in planetesimal formation, which are radial drift, fragmentation, and 
bouncing barriers.

The compressive strength derived from N-body simulations
(Kataoka et al. 2013, A&A, 554, A4)

(a) Hit-and-stick

(b) Collisional compression

(c) Gas compression

(d) Self-gravitational compression

gas flow

gravitational force

Fluffy dust forms icy planetesimals via static compression
(Kataoka et al., submitted to A&A Letter)

Akimasa Kataoka et al.: Static compression of porous dust aggregates
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Fig. 4. (a) Pressure P in [Pa] against filling factor �. The ten thin solid lines show the results for the initial BCCA clusters with di↵erent initial
random numbers and thick solid line shows the arithmetic average of the ten runs. (b) Pressure P in [Pa] against filling factor �. Same as the thick
solid line in (a) plotted with a dotted line of Equation (25). The parameters are N = 16384, Cv = 3 ⇥ 10�7, k

n

= 0.01, and ⇠crit = 8 Å.

10�4 10�3 10�2 10�1 100

�
10�4

10�3

10�2

10�1

100
101
102
103
104
105

P
[P
a]

Cv = 1⇥ 10�7

Cv = 3⇥ 10�7

Cv = 1⇥ 10�6

Cv = 3⇥ 10�6

Cv = 1⇥ 10�5

E
roll

r3
0

⇥ �3

Fig. 5. Pressure P in [Pa] against filling factor � with di↵erent strain
rate parameter Cv. Each line shows the average of ten runs of the fixed
strain rate: Cv = 1⇥10�7, 3⇥10�7, 1⇥10�6, 3⇥10�6, 1⇥10�5. The other
parameters are the same for every ten runs : N = 16384, k

n

= 0.01, and
⇠crit = 8 Å. The dashed line is Equation (25).

3.3. Dependence on the size of the initial BCCA cluster

To confirm that Equation (25) is valid in the lower density re-
gion, we perform the simulations with the di↵erent number of
particles, which is equivalent to the di↵erent sizes of the ini-
tial dust aggregates. Figure 6 shows dependence on the number
of particles of the initial BCCA cluster. The initial numbers of
particles are 1024, 4096, and 16384. The other parameters are
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Fig. 6. Pressure P in [Pa] against filling factor � with di↵erent number
of particles N. Each line shows the average of ten runs of the fixed
number of particles: N = 1024, 4096, and 16384. The other parameters
are Cv = 3 ⇥ 10�7, kn = 0.01, and ⇠crit = 8 Å in the case of N =
1024, 4096, and Cv = 1 ⇥ 10�7, kn = 0.01, and ⇠crit = 8 Å in the case of
N = 16384. The dashed line is Equation (25).

Cv = 3⇥10�7, kn = 0.01, and ⇠crit = 8 Å in the case of N = 1024
and N = 4096, and Cv = 1 ⇥ 10�7, kn = 0.01, and ⇠crit = 8 Å
in the case of N = 16384. We chose lower Cv in the case of
N = 16384 in order to investigate the strength in lower � region.
Each line represents the average of ten runs for each simulation
as in Figures 4(b) and 5. We draw the averaged line from the

Article number, page 7 of 12

t=0 (φ=0.0003) t=1×106t0 (φ=0.002) t=2×106t0 (φ=0.01)

(µm) (µm) (µm)

(µ
m
)

(µ
m
)

(µ
m
)

Fig. 3. Snapshots of the evolution of an aggregate under compression in the case of N = 16384. The top three figures are three dimensional
visualization. They have the same scale with di↵erent time epoch. The white particles are inside a box enclosed by the periodic boundaries. The
yellow particles are in neighboring boxes to the box of white particles. For visualization, we do not draw the copies in back and front side of the
boundaries but only 8 copies of the white particles across the boundaries. Each bottom figure represents projected positions onto two-dimensional
plane of all particles in each corresponding top figure. The gray points in the bottom figures correspond to the positions of the white particles in
the top figures and the yellow points correspond to those of the yellow particles in the top figures. Scales are in µm.

We show that compression strength is proportional to ⇠crit,
that is proportional to the rolling energy Eroll in Section 3.5. We
also confirm that Equation (25) is applicable to the case of dif-
ferent r0 in the silicate case.

3.2. Dependence on the boundary speed

To statically compress the aggregate, we should move the bound-
ary at a su�ciently low velocity not to create inhomogeneous
structure. Figure 5 shows the dependency on the strain rate pa-
rameter. Each line shows the average of ten runs. The fixed
parameters are N = 16384, k

n

= 0.01, and ⇠crit = 8 Å. The
strain rate parameter Cv is equal to 1 ⇥ 10�7, 3 ⇥ 10�7, 1 ⇥ 10�6,
3 ⇥ 10�6, and 1 ⇥ 10�5, respectively. The higher Cv, the higher
pressure in the low density region is required for compression.
This is mainly caused by the ram pressure from the boundaries
with high speed.

When the compression proceeds and the density becomes
higher to reach the line of Equation (25), the pressure follows
the equation. From Figure 5, Cv = 3 ⇥ 10�7 creates su�ciently
low boundary speed. The boundary speed can be calculated as
a function of �. Using Equation (6) and � = (4/3)⇡r3

0N/L3, the
velocity di↵erence between a boundary and the next boundary,

vd, can be written as

vd = |2vb| = 2
Cv

t0

0
BBBBB@
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3⇡r
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�

1
CCCCCA

1/3

(26)

In the case of Cv = 3 ⇥ 10�7, vd = 12.7, 5.9, and 2.7 cm/s for �
= 10�3, 10�2, and 10�1, respectively.

Here, we discuss the velocity di↵erence of boundaries, com-
paring with the e↵ective sound speed of the aggregates. The
e↵ective sound speed can be estimated as

cs,e↵ ⇠
s

P

⇢
⇠
s

Eroll

⇢0r

3
0

⇢

⇢0
⇠
r

Eroll

m0
�. (27)

where we use Equation (25). Using the rolling energy of ice
particles, cs,e↵ is given by

cs,e↵ ⇠ 1.1 ⇥ 103� cm/s. (28)

Therefore, in the case of Cv = 3 ⇥ 10�7, v

d

is not su�ciently
low in the beginning of the simulation, where the aggregate has
a low filling factor. However, the boundary velocity di↵erence
reaches lower than the e↵ective sound speed when � & 10�2.
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 The compressive strength has been investigated in 
high-density region (φ > 0.1; Seizinger et al. 2012). 
However, there has been no study on the compressive 
strength highly porous aggregates (φ < 0.1).
	

 In order to obtain the compressive strength of highly 
porous aggregates, we perform three dimensional 
numerical simulations of compression of a dust 
aggregate consisting of a number of spherical icy 
monomers.  We solve all interactions between 
monomers in contact (Dominik & Tielens 1997; Wada 
et al. 2007)

Results
	

 We derive the compressive strength as

Akimasa Kataoka et al.: Static compression of porous dust aggregates

Using K and P, Equation (15) gives an expression of P as

P =
2
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K/V +
1
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We define the force from particle j on particle i as f

i, j The force
F

i

can be written as a summation of the force from another par-
ticle as

F

i

=
X

j,i

f

i, j. (20)

Using f

i, j = � f

j,i, we finally obtain the pressure measuring for-
mula as
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t

/V. (21)

The first term in right-hand side of the equation represents the
translational kinetic energy per unit volume and the second term
represents the summation of the force acting at all connections
per unit volume. This expression is useful to measure the pres-
sure of a dust aggregate under compression. We do not need
to put any artificial object such as walls in simulations because
Equation (21) is totally expressed in terms of the summation of
the physical quantities of each particle, which are the mass, the
position, the velocity, and the force acting on the particle. In our
calculations, we take an average of pressure for every 10,000
time steps, correspondent to 1000 t0 because we set 0.1 t0 as one
time step in our simulation.

As mentioned in Section 2.2, the adopted damping force cor-
responds to rapid damping of normal oscillations. Thus, the
kinetic energy of random motion rapidly dissipates. This cor-
responds to the static compression and thus the compression
strength is determined by the second term of Equation (21).

3. Results

The top three panels of Figure 3 show snapshots of the evolution
of an aggregate under compression in the case where N = 16384,
Cv = 3 ⇥ 10�7, kn = 0, and ⇠crit = 8 Å. The top three pan-
els have the same scale but di↵erent time epochs, which are t

= 0, 1 ⇥ 106
t0, and 2 ⇥ 106

t0, respectively. The white parti-
cles are inside the computational region enclosed by the periodic
boundaries, while the yellow particles are in the neighbor copy
regions. (For visualization, we do not draw particles in the front-
and back-side copy regions.) The bottom three panels represent
the projected positions onto two-dimensional plane for the cor-
respondent top three figures. We confirm that the dust aggregate
is compressed by their copies from all directions. As the com-
pression proceeds, the aggregate of white particles is compressed
by the neighboring aggregate of yellow particles. We focus on
how high pressure is generated by quasi-static compression in
numerical simulations. Our numerical simulations have several
parameters; the size of the initial BCCA cluster, the compres-
sion rate, the normal damping force, and the critical displace-
ment (corresponds to the rolling energy). We investigate the de-
pendence of the pressure on these parameters, by performing a
lot of runs with di↵erent parameter sets. Although we assume
ice aggregates in most runs, we also investigate cases of silicate
aggregates to compare them with previous studies.

3.1. Fiducial run: obtaining the compression strength

We put a BCCA cluster as the initial aggregate. The BCCA clus-
ter is created by sticking the copy of the aggregate from random
direction. The results depend on the random number of the ini-
tial condition, which is the shape of the BCCA aggregate. To
avoid the dependence, we take arithmetic averages of ten simu-
lations of di↵erent initial conditions. The pressure is measured
using Equation (21) at each run. We define the filling factor of
an aggregate as

� =
V0N

V

, (22)

where V0 is the monomer volume, N is the number of monomers
of the aggregate, and V is the volume enclosed by the bound-
aries, which has a length of L. The filling factor also can be
written as � = ⇢/⇢0. Figure 4 shows that the measured pres-
sure as a function of the filling factor �(t). The parameters of
the simulations are N = 16384, Cv = 3 ⇥ 10�7, kn = 0.01,
and ⇠crit = 8 Å. The corresponding Eroll is 4.74 ⇥ 10�9erg for
⇠crit = 8 Å. Each colored line in Figure 4(a) shows each sim-
ulation with the di↵erent initial shape of the aggregate. Figure
4(b) shows the arithmetic average of the pressure measured in
ten di↵erent runs. Each line shows in di↵erent ranges of �. The
lowest � is determined with the largest size of the initial bound-
ary boxes of the ten runs. We find that the compression strength
is well reproduced by

P = P0�
3, (23)

where P0 = 4.74⇥105 Pa. We analytically discuss why the com-
pression strength is proportional to �3 in Section 4. In the high
density region (� & 10�1), the measured strength deviates from
the line of P = P0�3. This is because the dissipation mechanism
changes in the high density region (see Section 3.4). The devia-
tion in the low density region (� . 3 ⇥ 10�3) is partly caused by
a finite boundary speed (or compression rate) as discussed in the
next subsection. Another reason of the deviation in the low den-
sity region is related to the density of the initial BCCA cluster.
The filling factor of BCCA �BCCA is estimated as,

�BCCA =
V0N

V

BCCA

=

 
3
5

!3/2

N

�1/2, (24)

where we use the radius and the volume of a BCCA clus-
ter, rBCCA =

p
5/3N

1/2
r0 and VBCCA = (4⇡/3)r3

BCCA, respec-
tively (e.g., Suyama et al. 2008). For N = 16384, we obtain
�BCCA ⇠ 3 ⇥ 10�3. In the early stage of compression, � is
lower than �BCCA because the initial BCCA clusters are apart
from each other. This space between BCCA clusters would also
cause the deviation from the line of P = P0�3.

Now, we discuss the coe�cient P0 of the compression
strength. Wada et al. (2008) shows that Eroll is important in the
collisional compression strength. Thus, Eroll is expected to be
also important in the static compression strength. Considering
that the characteristic volume is monomer’s volume ⇠ r

3
0, we

suppose P0 = Eroll/r3
0, based on dimension analysis. Therefore,

the compression strength can be written as

P =
Eroll

r

3
0
�3. (25)

We analytically discuss and confirm this equation in Section 4.
We also plot this equation in Figure 4(b). This figure clearly
shows that the result is well fitted by Equation (25).
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where r0 is the monomer radius and Eroll is the 
rolling energy, which is the energy for rolling of 
a particle over a quarter of the circumference of 
another particle in contact. 

Fig.2. Snapshots of the evolution of an aggregate under compression in the case where N = 16384. The white 
particles are inside the computational region enclosed by the periodic boundaries, while the yellow particles 
are in the neighbor copy regions.

Fig.3. Pressure P in [Pa] against filling factor φ. 
The yellow dashed line shows the derived 
compressive strength formula.

A&A proofs: manuscript no. pathwayaa

Fig. 1. Schematic drawing to illustrate the dust growth via flu↵y aggre-
gates. (a) The dust aggregate hit to another aggregate to be stick. This
makes dust density lower, and it occurs in a very early stage of the dust
growth. (b) When the collisional speed is enough high to disrupt the dust
aggregate, they are compressed. (c) Dust aggregate has a velocity dif-
ference against gas, and they feel the ram pressure by the gas. The ram
pressure statically compresses the dust aggregate. (d) When the dust ag-
gregate become as massive as they do not support their structure, they
are compressed by self gravity of themselves.

2. Method

The compressive strength of a highly porous dust aggregate, P,
is given by (Kataoka et al. 2013)

P =
Eroll

r

3
0

 
⇢

⇢0

!3

, (1)

where ⇢ is the mean internal density of the dust aggregate, r0
the monomer radius, ⇢0 the material density, and Eroll the rolling
energy, which is the energy for rolling of a particle over a quarter
of the circumference of another particle in contact. In this paper,
we adopt ⇢0 = 1.0 g/cm3, r0 = 0.1 µm, and Eroll = 4.74 ⇥ 10�9

erg , which correspond to icy particles.
When a dust aggregate feels a pressure which is higher than

its compressive strength, the aggregate is quasi-statically com-
pressed until its strength equals to the pressure. We define the
dust internal density where the compressive strength equals a
given pressure as a equilibrium density ⇢eq. Using Eq.(1), we
obtain ⇢eq as

⇢eq =

0
BBBB@

r

3
0

Eroll
P

1
CCCCA

1/3

⇢0. (2)

As a source of the pressure, we consider that due to ram pressure
of the disk gas or self gravity of the aggregate.

m [g]

ρ
 [

g
/c

m
3
]

St=1

disk gas
self gravity

Brownian motion
Radial drift motion
Azimuthal motion
Turbulent motion

dust growth without static compression

10-5

10-4

10-3

10-2

10-1

100

10-10 10-5 100 105 1010 1015

Fig. 2. The equilibrium dust density at 5AU in MMSN disk. The blue
thick solid line represents the equilibrium density of gas pressure where
the ram pressure of gas is equal to the compressive strength of the dust
aggregate. The thin dotted lines represent the component of gas ram
pressure, which are induced by the velocity di↵erence between gas and
dust, such as Brownian motion, radial drift motion, azimuthal motion,
and turbulent motion. The red solid line represents the equilibrium den-
sity of self gravity. The blue and red shaded region represent where the
compressive strength of the dust aggregate is lower than the pressure of
gas or self-gravity, so these aggregates are compressed until their den-
sity becomes the equilibrium density. We also plot the dust growth path
without static compression (Okuzumi et al. 2012).

We obtain ram pressure of the disk gas as follows. Here, we
consider a dust aggregate of mass m and radius r, and it is mov-
ing in the disk gas with velocity v against the gas. The pressure
Pgas against the aggregate can be defined as the gas drag force
divided by the geometrical cross section: Pgas ⌘ Fdrag/A, where
Fdrag = mv/ts, A = ⇡r2, and ts is the stopping time of the aggre-
gate. Thus, we obtain the pressure as

Pgas =
mv

⇡r2
1
ts
. (3)

To obtain ts and v, the typical gas drag law is adopted. The
gas drag law is Epstein regime when the dust radius is less than
4/9 times the mean free path of gas, and Stokes regime on the
other hand if Reynolds number is less than unity (see Eq.(4) in
Okuzumi et al. (2012) for example). When Reynolds number ex-
ceeds unity, the gas drag law changes as a function of Reynolds
number (see Eq.(8a) to Eq.(8c) in Weidenschilling (1977)). The
drag force is determined by the relative velocity of the gas and
dust. The relative velocity is induced by Brownian motion, radial
drift, azimuthal drift, and turbulence. We use the closed formula
of turbulence model (Ormel & Cuzzi 2007), and assume the tur-
bulent parameter ↵D = 10�3 except for the strong turbulence
case where ↵D = 10�2.

We assume the minimum mass solar nebula, which was con-
structed based on our solar system (Hayashi 1981). At a radial
distance R from the central star, the gas surface density profile
is 1700 g/cm2 ⇥ (R/1AU)�1.5, and the dust-to-gas mass ratio is
0.01. The temperature profile adopted is 137 K ⇥ (R/1AU)�3/7,
which corresponds to midplane temperature (Chiang et al. 2001).
This is cooler than optically thin disk models to focus on the dust
coagulation in the midplane.

We also calculate the self-gravitational pressure as follows.
We define the force on the dust aggregates as F = Gm

2/r2, and
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Porosity evolution in protoplanetary disks
	

 When a dust aggregate feels a pressure 
which is higher than its compressive strength, 
the aggregate is quasi-statically compressed 
until its strength equals to the pressure.	

As a 
source of the pressure, we consider that due to 

Fig.5. The dust density where the compressive 
strength is equal to surrounding pressure. 

Static compression of porous dust aggregates
Akimasa Kataoka1, Hidekazu Tanaka2, Satoshi Okuzumi3, Koji Wada4
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Fig.1. The dust mean internal density against the dust mass on the pathway of porosity evolution at 
5 AU in MMSN by considering static compression.

the initial BCCA cluster, N / r

2
in as shown in Figure 11. When

the fractal dimension is 3, N can be written as

N(r < rin) =
�V(r < rin)

V0
= �

 
rin

r0

!3

, (29)

where V(r < rin) = (4/3)⇡r3
in. We also plot this equation as

dashed lines for each � in Figure 11. Each dashed line has a
good agreement in the large scale, while maintaining N / r

2
in in

small scale.
Therefore, the structure evolution in the static compression

is as follows. Initially, N / r

2
in because the aggregate is a BCCA

cluster. As compression proceeds, the fractal dimension D be-
comes 3 in a large scale while it is 2 in a small scale. The transit
scale from D = 2 to D = 3 becomes smaller as compression pro-
ceeds until D = 3 in any scale. This structure evolution means
that the static compression reconstructs the aggregate first in a
large scale with keeping the small scale BCCA structure. This
is the reason why the rolling motion determines the compression
strength, as discussed in Section 4.

3.7. Silicate case : Comparison with previous studies

The compression strength has been investigated in the previous
study (Seizinger et al. 2012). To investigate the connection of
compression strength from the low density to the high density re-
gion, we perform simulations in the case of silicate with the same
parameters of Seizinger et al. (2012). Figure 12 shows compres-
sion in the case of silicate whose monomer size is 0.6 µm. The
parameters are N = 16384, Cv = 3 ⇥ 10�7, and kn = 0.01. The
solid lines in Figure 12(a) show the results of ten runs with dif-
ferent initial aggregates and the thick solid line in Figure 12(b)
shows their average. Using the rolling energy of silicate, which
is Eroll = 1.42 ⇥ 10�8 erg, we also plot the line of Equation (25)
in Figure 12(b). Since t0 is given by 1.71 ⇥ 10�9 sec in the case
of silicate aggregates, vd becomes 4.01 cm/s for � = 10�2 with
Cv=3 ⇥ 10�7. This vd is larger than cs,e↵ (= 0.77 cm/s when
� = 0.01) for silicate aggregates, allowing the numerical results
shown in Figure 12 to deviate from the line of Equation (25) in
the low � region. When vd = cs,e↵ , � = 3.4 ⇥ 10�2, and there-
fore, the compression strength should obey Equation (25) when
� & 3.4⇥10�2. In the case of silicate, computational time is huge
compared with ice particle cases. We take relatively high value
of the boundary speed to save the computational time. Therefore,
the result is deviate from Equation (25) in the low density region
because of the high velocity. In other words, the compression is
not static in the low density region. In the high density region,
on the other hand, the result is in good agreement with Equation
(25), suggesting that Equation (25) is applicable to aggregates
consisting of silicate particles with di↵erent r0.

To directly compare with previous studies, Figure 13 shows
the filling factor in linear scale against pressure in log scale. This
figure corresponds to Figure 4 in Seizinger et al. (2012). The
solid lines are our simulation results and the dashed line is Equa-
tion (25) in the low density region (� < 0.1). The dotted and
solid lines are the result of Seizinger et al. (2012) and the fitting
formula to experiments (Güttler et al. 2009), respectively. They
performed similar N-body simulations to ours but using a BPCA
aggregate composed of silicate particles as an initial condition.
The compression strength of our simulations has a good agree-
ment with the same interaction model in Seizinger et al. (2012)
with a little discrepancy: � = 0.24 at P = 300 Pa in our simula-
tions and � = 0.21 at P = 300 Pa in Seizinger et al. (2012). The
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DT model in S12

Fig. 13. The filling factor � against pressure P in [Pa]. This figure
is same as Figure 12, but plotted with linear scale of � and reversal
of xy axis to compare with previous studies (see Figure 4 in Seizinger
et al. (2012)). The dotted line is the result of numerical simulations
in the high density region (� & 0.1) in Seizinger et al. (2012) and the
thin solid line is the fitting formula proposed by Güttler et al. (2009).
Our results consistently connect to the previous simulations in the high
density region.

discrepancy, 13% in �may be caused by the di↵erence in the ini-
tial aggregate or the pressure measurement method. The fitting
formula of Güttler et al. (2009) suggests � = 0.17 at P = 300
in the experiments. The discrepancy from our simulations is 29
% in �. In applicable uses of the static compression formula, we
focus on obtaining � with a given P.

4. Understanding the compression strength formula

In this section, we analytically derive the compression strength
and confirm Equation (25). First, we consider the structure of a
flu↵y aggregate in static compression in our simulations. As de-
scribed in Section 2.3, we adopt the periodic boundary condition
and put a BCCA cluster as the initial condition. This corresponds
to a large aggregate which filled up with BCCA clusters three di-
mensionally. As compression proceeds, the initial BCCA cluster
is compressed but the aggregate keeps smaller BCCA structure
as confirmed in Section 3.6. Therefore, the aggregate in static
compression always consists of BCCA clusters in some scale
and filled up with them. Figure 14 illustrates the aggregate in
static compression. The enclosed lines depict BCCA clusters in
a small scale.

Next, we consider why the compression strength can be de-
termined by the rolling energy. The internal mass density and
the volume filling factor of the aggregate are equal to those of
the BCCA clusters. Compression of the whole aggregate pro-
ceeds by compression of each cluster. Therefore, the compres-
sion strength of the whole aggregate would be determined by
BCCA clusters. The right panel of Figure 14 illustrates com-
pression of one of BCCA clusters. The pressure on the BCCA
cluster is exerted by neighbor clusters, which causes the com-
pression of the BCCA cluster. The BCCA cluster can be further
divided into two smaller subclusters because BCCA clusters are
created by cluster-cluster aggregation. A large void exists be-
tween the two smaller clusters and they are connected with one
connection of monomers in contact, represented by dashed line
in the right panel of Figure 14. The compression of the BCCA
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Fig.4. Comparison to experiments and 
numerical simulations in high-density region 
(Seizinger et al. 2012)
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ram pressure of the disk gas or self gravity of 
the aggregate. We analytically derive the 
pathway of internal density evolution. 
	

 As dust aggregates coagulate, they initially 
grow fractal, then gas pressure compress 
aggregates. Finally, when they become 
massive, they are compressed by self gravity 
to form compact planetesimals. Moreover, we 
show that fluffy aggregates avoid radial drift 
barriers (Fig.1 and Fig.6).

Fig.6. Porosity evolution at 8 AU in MMSN (left) and in two times as 
massive as MMSN (right).


