

Deriving the gas and dust disk structure of the transition disk HD 135344B (SAO 206462) from multi-instrument observations

A. Carmona (IPAG, Grenoble),

C. Pinte (IPAG), W.-F. Thi (IPAG), M. Benisty (IPAG), F. Ménard (UMI-FCA Chile, IPAG), I. Kamp (Groningen), C. Grady (Eureka Sc., GSFC), J. Olofsson (MPIA, Heidelberg), A. Roberge (NASA, GSFC), P. Woitke (St. Andrews) + GASPS collaboration + PIONIER team (Grenoble)

Messages of this poster:

★ We suggest that the inner-most disk of HD 135344B is composed of carbonaceous grains at 0.08<R<0.2 AU.

- \star The inner cavity has ~10⁻⁵ M_o of gas inside the cavity. The surface density of the gas inside the cavity must increase with radius. The g/d ratio is > 100 inside the cavity.
- **\star** The outer disk a mass of a few 10⁻³ M_{\odot}. The g/d ratio should be lower than 50 at R>30 AU.

IPAG

de Grenoble

et d'Astrophysiqu

I. Motivation:

Transition disks are protoplanetary disks that display evidence for a cavity in their disk structure. These cavities might indicate the presence of young planets.

- ***** What is the disk gas mass and surface density inside and outside the cavity?
- **★** What is the dust content inside the cavity?
- **★** How is the disk structure related to planet

2. Principal observational constraints

formation?

The goal of this project is to derive the gas and dust disk structure of the F4Ve (pre-) transition disk HD 135344B (in particular inside the sub-mm cavity), from **simultaneous** radiative transfer modeling of multi-instrument multiwavelength gas and dust observations.

The SED suggests the presence of a gap [1]. No silicate emission at 10 μm [15].

ALMA

Cavity radius: 45 AU. Emission inside a 33x70 AU beam centered on the star at 870 μm (3σ) : 10.5 mJy [2,3]

4. Results

(tracer of warm gas) extending at least 25 **AU** (d = 140 pc) [4]

Model

V_{SLR} [km/s] Herschel [6] and JCMT [7] gas detections

3. Methodology

We use the dust Monte Carlo radiative transfer code MCFOST [8] to fit the SED and derive the density and thermal structure of the disk. Then we use the thermochemical radiative transfer code ProDiMo [9,10] to calculate the gas heating and cooling balance, the chemistry, and predict gas emission lines. We compare the model predictions with multi-instrument observations and constraints from the literature.

To fit to the CO P(10) line and the SED simultaneously Ι. we required a **carbon enriched inner disk** (R<0.2 AU). Inner disks of 100% astro. silicates, or with an uniform mixture of carbon/silicate grains that fitted the SED produced CO rovibrational line profiles inconsistent with the observations.

Modeled SED HD 135344B Ε 10-≥ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ thermal scattered emission 10⁻¹⁸ light 100 1000 10 $\lambda (\mu m)$ Line Fluxes ²CO J3-2 [OI] [Сп] ¹²CO J2-1 [OI]v = 1 - 0 P(10)63 µm 145 µm 157 µm 1.27mm 4.7545 μm 870 μm 3.6-4.8E-17 1.2E-19 Observed <4.6E-18 <6.4E-18 8.0E-20 3.4E-17 1.6E-18 1.5E-19 4.7E-20 2.3E-18 70% 1.7E-18

% of flux inside the slit

1.5E-17

II. VLTI/PIONIER H-band interferometry indicates that the emission originates at R<0.2 AU (inside the silicate sublimation radius). The visibilities (black) are reproduced by a disk of carbonaceous grains at 0.08 < R < 0.2 AU (red).

carbon disk 0.08<R<0.2 AU

- \star Grids of models around good dust and gas solutions are calculated to find the most likely values of the disk parameters.
- \star Best models are tested for consistency with near-IR interferometry data.

References

[1] Brown et al. 2007; [2] Brown et al. 2009; [3] Andrews et al. 2011; [4] Pontoppidan et al. (2008); [5] Muto et al. 2012; [6] Meeus et al. 2012; [7] Dent et al. 2005; [8] Pinte et al. 2006;

[9] Woitke et al. 2009; [10] Thi et al. (2013); [11] Lahuis et al. 2007; [12] Carmona et al. 2011; [13] Garufi et al. 2013; [14] Perez et al. 2013 (in prep); [15] Geers et al. 2006;

III. The CO P(10) line indicates that the surface density of the gas at R<45 AU must increase as a function of the **radius** (i.e. surface density power law exponent q>0).

IV. The CO P(10) and the [OI] 63 μ m line fluxes are best reproduced by disks with a gas-to-dust ratio > 100 in the inner disk (R< 30), and a gas-to-dust ratio < 50 in **the outer disk.** The best model that describes the [OI] 63 µm flux has a smooth gas surface density at 30 AU.

5. Conclusions

- \star Our model suggest ~10⁻⁵ M_{\odot} of gas inside the cavity.
- \star To reproduce simultaneously the SED, the CO P(10) line, and near-IR interferometry data, we propose that the disk is composed of carbonaceous grains ($10^{-12} M_{\odot}$) from 0.2 AU (silicates sublimation radius) down to 0.08 AU (corotation radius).

Acknowledgements

We acknowledge funding from the Agence Nationale pour la Recherche (ANR) of France under contract ANR-2010-JCJC-0504-01 and from European Commission's 7th Framework Program (contracts PERG06-GA-2009-256513 FP7-SPACE SPA.2011.2.1-01).

Calculations were performed at Service Commun de Calcul Intensif de l'Observatoire de Grenoble (SCCI) on the FOSTINO super-computer.

 \star Our model has 10⁻⁷ M_o of dust assuming a dust size 0.1<a<1000 µm. This consistent with the SMA 870 µm measurement. Lower dust masses are possible. ALMA 430 µm photometry of the inner cavity [14] (when public) would be useful to better constrain M_{dust} and the dust size distribution inside the cavity.

* An increasing gas surface density as a function of the radius in the inner cavity is consistent with the expected effect of a single migrating jovian planet. This planet, if sufficiently massive, could be responsible of the spiral patters observed [5,13]. \star We find in our models that the total gas mass of the disk is a few times 10⁻³ M_o, lower than the total gas mass of 2x10⁻² M_o

expected for a primordial disk with similar total dust mass of 10^{-4} M_{\odot}. HD 135344B is an evolved disk.

* The HD 135344B disk structure proposed could be applied to other (pre-)transition disks with CO 4.7 μm emission extending several AU.