

Cosmic-Ray Ionization of a Molecular Cloud interacting with the Supernova Remnant W28 S. Vaupré¹, C. Ceccarelli¹, P. Hily-Blant¹, G. Dubus¹ and T. Montmerle²

¹Institut de Planétologie et d'Astrophysique de Grenoble; ²Institut d'Astrophysique de Paris solenn.vaupre@obs.ujf-grenoble.fr

Context: open questions

- Cosmic-rays (CR) induce major modifications in the physical conditions, dynamical evolution and chemical composition of molecular clouds
- Supernova remnants (SNR) to be confirmed as low-energy-CR accelerators
- Unknown initial CR energy
- **spectrum** at the acceleration site
- Observational evidence of **CR** interaction with molecular clouds:
 - 1. \gtrsim GeV CR: γ -ray emission through π° -decay
 - 2. \leq GeV CR: ionization of the dense gas

Goals

General goals:

Molecular clouds nearby W28:

• Density $\sim 10^3 - 10^4 \text{ cm}^{-3}$

within

10⁻¹³

(yellow box) clouds

(Kaspi et al. 1993 [ApJ 409, L57])

• $T \sim 10 - 25 \text{ K}$

telescope

About SNR W28:

• Distance 2-3 kpc

• Age 35-150 10^3 yr

• Targets

- Constrain the initial low-energy (ionizing) CR flux, from millimeter observations
- Constrain propagation properties of CR with respect to energy
- Identify new tracers of the ionization in molecular clouds This poster:
 - **Determine the ionization fraction** of the molecular gas
 - Determine CR ionization rate ζ of the cloud due to the nearby SNR, with DCO^+ and HCO^+ as molecular tracers

Observations

- Observations with IRAM 30m radiotelescope
- Data reduction with CLASS package of GILDAS software
- Linear spatial resolution < 0.13 pc (beam size < 29")
- Determine **abundances and abundance ratios** of the following species:

Species	Freq.			
	(GHz)			
$^{13}CO(1-0)$	110.201			
$^{13}CO(2-1)$	220.399	Dhug gond		
$C^{18}O(1-0)$	109.782	F Hys. cond.		
$C^{18}O(2-1)$	219.560			
$\mathrm{DCO}^+(2-1)$	144.077	Junization		
$H^{13}CO^+(1-0)$	86.754			

1. CO isotopologues to determine the physical conditions 2. HCO^+ , DCO^+ as tracers of the ionization

Source

Map of the region: γ -ray emission seen with HESS telescope (green contours), overlapping 12 CO NANTEN observations (background). From Aharonian et al. (2008) [A&A 481, 401].

Method

• Derive physical conditions from observa-

 $n(H_2)=5e+03 \text{ cm}^{-3}, T=15 \text{ K}, R_1=5e-05$

Chemical network

- tions of CO isotopologues, by means of a large velocity gradient (LVG): density $n(H_2)$, temperature T, column density of ^{13}CO and emitting region size.
- Use simple deuterated chemical network, following Guélin et al. (1977) [ApJ 217, L165] and Caselli et al. (1998) [ApJ 499, 234].
- ionization • Derive \mathbf{the} fraction $x(e) = n(e^{-})/n(H_2)$ and CR ionization rate ζ from physical conditions and abundance ratios $R_D = [DCO^+]/[HCO^+]$ and $R_H = [\text{HCO}^+] / [\text{CO}].$

CR ionization rate ζ as a function of R_D , with different physical conditions.

Green diamonds represent the ζ values in points where DCO⁺ is detected and orange diamonds lower limits from the non-detections.

Results and conclusions

- Physical conditions characteristic of dense clouds $(A_V > 10 \text{ mag})$ and consistent with published values of adjacent clouds (Lefloch et al. 2008 [A&A 489, 157]).
- DCO⁺ emission detected in only two positions; upper limits derived for other positions give lower limits on ζ (table).
- Partially enhanced CR ionization rates compared to standard average $\zeta = 10^{-17} \text{ s}^{-1}.$

Models and data points for ζ as a function of H₂ column density, from Padovani et al. (2013, in press). Overplotted are the new data for W28: green diamonds represent the ζ values in points where DCO⁺ is detected and orange diamonds lower limits from the non-detections.

Pos	$n(H_2)$	T	R_H	R_D	x_e	ζ
	(cm^{-3})	(K)	(10^{-4})			$(10^{-17} \text{ s}^{-1})$
N1	4e+03	15	0.43	< 0.0092	1.9e-06	> 24
N3	$3\mathrm{e}{+}03$	10	0.23	< 0.0088	1.6e-06	> 9
N5	$5\mathrm{e}{+}03$	15	0.47	0.016	7.9e-07	7
N6	$2\mathrm{e}{+}03$	20	0.37	0.0093	2.3e-06	11
N7	$2\mathrm{e}{+}03$	15	0.24	< 0.014	1.0e-06	> 2
SE1	$4\mathrm{e}{+03}$	25	0.17	< 0.0059	4.9e-06	> 35

We acknowledge funding from Labex OSUG@2020 and national program PNHE.

Image courtesy of NRAO/AUI and Brogan et al.

