## Formation of Molecular Clouds and Initial Conditions of Star Formation

Tsuyoshi Inoue (Aoyama-Gakuin Univ.) and Shu-ichiro Inutsuka (Nagoya Univ.)

Inoue & Inutsuka 2012, ApJ, 759, 35 --- 2013 in prep.

- □ Observations suggest: Molecular clouds are formed and grown by accretion of HI gas with  $\langle n \rangle \sim 10 \text{ cm}^{-3}$  (Blitz+06; Kawamura+09; Fukui+09).
- □ 3D MHD simulation of molecular cloud formation by HI gas accretion with effects of chemical reactions, radiation transfer, cooling/heating, thermal conduction & self-gravity.
  - HI gas formed by thermal instability.
     Molecular cloud formed by HI accretion.





- ✓ Accretion of clumpy gas flows drives supersonic turbulence behind shocks.
- $\checkmark$  Cold molecular clumps (T<10K) are embedded in diffuse thermally unstable gas (T>1,000K) even deep inside region thanks to turbulent mixing.

Evolution of energies (except accretion flows)



- → Dynamics of molecular cloud is governed by turbulence of diffuse gas component, but observations using molecular line emissions cannot detect it.
- Statistical features of molecular clumps (def. of "clump": connected region having  $n > n_{three}$



- satisfy the fragmentation condition to form binary proposed by Machida+04, 08.
- ✓ Low-density clumps with  $n_{\rm fh}\sim 100~{\rm cm}^{-3}$  and initial HI clouds show  $dN \propto M^{+3} dM$ , agrees with theoretical mass spectrum of clumps formed by the thermal instability (Hennebelle & Audit 07) and observation (Kramer+96; Schneider+02)
  - √ High-density clumps with n<sub>th</sub> ~ 1000 cm<sup>-3</sup> show dN ∝ M<sup>-2.3</sup> dM, agrees with observations (lkeda+07).
- Conclusion: realistic initial conditions of star/protoplanetary disc formation can be obtained by simulations!

## Formation of Massive Molecular Cloud Cores by a Cloud-cloud Collision

Tsuyoshi Inoue (Aoyama-Gakuin Univ.) and Yasuo Fukui (Nagoya Univ.)

Inoue & Fukui 2013, ApJ submitted arXiv:1305.4655

- Observations by NANTEN2 telescope (Fukui+13; Furukawa+09; Ohama+10; Torii+11):
- Colliding two distinct molecular clouds are associated with Spitzer bubbles.



Contour: NANTEN2 <sup>12</sup>CO J=1-0 (Fukui+13 in prep.) Color: Spitzer 8, 24µm (Benjamin+03, Carey+09)

- Median parameters of the cloud-cloud collision.
  - $\checkmark M_{\rm cloud} \sim 10^4 \text{-} 10^5 M_{\rm sun}$   $\checkmark L_{\rm cloud} \sim 5 \text{ pc}$   $\checkmark v_{\rm coll, relative} \sim 26 \text{ km/s}$
  - → Intensive molecular cloud collision induces massive star formation?
- $\hfill \square$  Isothermal 3D MHD simulation of cloud-cloud collision with self-gravity (c  $_s$  = 0.2~km/s).
- Initial conditions (fiducial model):



- Results

  | Column = 0.63 Myr | Column = 0.63 M
- Why are filaments formed behind shock?
- ✓ Deformed shock induces focusing flows.
  - → filaments perpendicular to B field is formed



- Why does core become massive?
- $\checkmark$  Alfven velocity is substantially enhanced behind shock:  $c_A \approx \sqrt{M_A} c_{\text{A.ini}}$ 
  - ightarrow Enhancement of effective Jeans mass:  $M_{\rm J,eff} = G^{-3/2} \langle c_{\rm eff} \rangle_{\rm core} \langle \rho \rangle_{\rm core}^{-1/2} \propto B_{\rm ini}^2 v_{\rm coll} \rho_{\rm ini}^{-3/2}$
  - ightarrow Effective Jeans mass should increase with  ${
    m v_{coll}}$ ,  $B_{
    m ini}$  and decrease with  ${
    m 
    ho_{ini}}$ .
- ✓ Results of parameter survey support the idea.

| Model                                               | fiducial | large $ ho_{ m ini}$ | small B <sub>ini</sub> | small v <sub>coll</sub> |
|-----------------------------------------------------|----------|----------------------|------------------------|-------------------------|
| $\langle n \rangle_{\rm ini} \ [{\rm cm}^{-3}]$     | 300      | 1000                 | 300                    | 300                     |
| $B_{\rm ini}$ [ $\mu$ G]                            | 20       | 20                   | 10                     | 20                      |
| v <sub>coll</sub> [km/s]                            | 10       | 10                   | 10                     | 5.0                     |
| $M_{\text{core, tot}} [M_{\text{sun}}]$             | 194      | 126                  | 35                     | 24                      |
| $M_{\rm mag} [M_{\rm sun}]$                         | 122      | 63                   | 14                     | 36                      |
| $M_{\rm turb} [M_{\rm sun}]$                        | 71       | 63                   | 21                     | 53                      |
| $\langle n \rangle_{\rm core}  [{\rm cm}^{-3}]$     | 8.4e4    | 4.9e5                | 3.1e5                  | 2.0e4                   |
| $\langle B \rangle_{\rm core} [\mu G]$              | 2.8e2    | 6.3e2                | 2.9e2                  | 1.8e2                   |
| $\Delta v_{\text{core}} \text{ [km s}^{-1}\text{]}$ | 1.2      | 1.3                  | 0.86                   | 0.23                    |
| tform [ Myr ]                                       | 0.63     | 0.29                 | 0.36                   | 0.78                    |

□ Conclusion: intensive molecular cloud-cloud collision discovered by NANTEN2 observations can induce massive star formation!