Does the Differential Photodissociation and Chemical Fractionation Reaction of ¹³CO Affect the Column Density Estimates? László Szűcs and Simon C.O. Glover Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik ### INTRODUCTION Carbon monoxide and its isotopes are used as a tracer of column density in studies of the interstellar medium. The most abundant CO isotope, ¹²CO, is usually optically thick in intermediate density regions and so provides a lower limit for the column density and total mass. In these regions, less abundant isotopes are used, such as ¹³CO. To relate observations of ¹³CO to the ¹²CO column density, a constant ¹²CO/¹³CO ratio is often adopted. In numerical studies the constant ratio is also used to infer ¹³CO abundances when only ¹²CO chemistry is included due to the high computational expense of additional species. In this work, we examine the impact of two effects – **selective photodissociation** of ¹³CO and **chemical fractionation** – on the isotopic ratio, with the aid of numerical simulations. ## QUESTIONS TO ANSWER: - 1) Can we infer ¹³CO column densities and emission from simulations which only include ¹²CO chemistry? - 2) How much CO mass do we miss if we use a constant isotopic ratio when interpreting observations? ### METHODS: - X GADGET-2 (Springel 2005) SPH (Lagrangian) hydrodynamics code with self-gravity - TreeCol (Clark et al. 2012) to calculate the attenuation of the interstellar radiation field due to dust grains, H₂, ¹²CO and ¹³CO. - Nelson & Langer (1999) chemical network with multiple CO formation pathways. Coppied ¹²CO creation and destruction pathways for ¹³CO - × Fractionation reaction added: ${}^{13}C^{+} + {}^{12}CO \Leftrightarrow {}^{12}C^{+} + {}^{13}CO + \Delta E$ - X Line radiative transfer post processing with RADMC3D (Dullemond) in 12 CO and 13 CO J = 1 \rightarrow 0 transition ## INITIAL CONDITIONS: - \times 10⁴ M_{\odot} fully molecular cloud, 0.5 M_{\odot} mass resolution - Initial density 300 or 1000 particle per cm³ - \times 0.3, 0.6 and 1 \times Z $_{\odot}$ - \times 0.1, 1, 10 \times Draine unit for the ambient radiation field - X Decaying turbulence with a power spectrum of $P(k) \propto k^{-4}$ - X ¹²C/¹³C ratio of 60 # THE N(12CO)/N(13CO) RATIO At the outer parts of the domain, where total column densities are low, thus the shielding is ineffective – but CO is not fully destroyed – the preferential photodissociation dominates, increasing the ratio (yellow). Further in, where the column densities are high enough for both isotopic species, the fractionation reaction takes over and decreases the ratio (blue). At the core of the cloud the ISRF is attenuated to high extent and thus it can not ionize carbon atoms, the fractionation reaction stops. The ratio increases again to the initially set ratio of ¹²C and ¹³C (orange). The isotopic ratio does not show a clear correlation with the volume density. The ^{12}CO column density, however, correlates well with the column density ratio of the isotopic species (see **figure above**). The correlation does not change significantly over wide parameter ranges, but shows mild trends: high n_0 and low Z_{\odot} result in shallower dips, while ISRF tilts the curve. Note that the total column density, into which a given ^{12}CO column density translates, changes in wide range depending on Z_{\odot} and the ISRF. ### EMISSION MAPS: distance [pc] We calculated the ¹³CO emission, assuming different number densities: self-consistently calculated, constant scaled (1/60) and variable scaled ¹²CO number density. For the later in each line of sights the ratio is calculated using the correlation of the isotopic ratio and ¹²CO column density. The **figures to the left** show the relative difference of emission when the later two are compared to the self consistent case. When using constant scaling the average relative difference is 21.4%, while in case of the variable scaling it is 5.3%. The estimated total ¹³CO mass with the standard method (Wilson et al. 2009) is 0.127 M_o for the self consistent emission map, 0.098 M_o (77%) for constant scaling, and 0.125 M_o (98.4%) for variable scaling. ## CONCLUSIONS: - $^{\times}$ The 12 CO/ 13 CO ratio changes within a factor of \sim 4 on the spatial scale - The ratio correlates with N(¹²CO). The correlation depends weakly on cloud parameters - With the correlation ¹³CO emission could be better infered from simulations including only ¹²CO chemistry # WORK IN PROGRESS: - X Dependence on the fractionation reaction and photodissociation rates? - Are there morphological differences of emission maps when using constant and self-consistent ratios? - Implementation of iterative method to improve observational mass estimates ## THE AUTHOR If you have any questions or comments, then please feel free to ask me here or send an e-mail to: szucsl@uni-heidelberg.de