
	
  

Clouds fragmentation provides the seeds from which future stars form. In this contest it is 
commonly accepted that a crucial role in stellar formation role is played by the development of 
an accretion disk from which stars gain a relevant part of their final mass (e.g. Voroyob & Basu 2006). 

The introduction of an accretion phase during the early stages of pre-main evolution (pre-MS) is 
a crucial point in theoretical stellar modelling, especially if one considers that generally in 
standard stellar evolutionary codes the star is supposed to evolve from the early pre-MS as an 
already formed object. In recent works, Baraffe et al. have shown the impact of the inclusion of 
accretion processes into star evolution, showing that large discrepancies among non-accreting 
and accreting models are present.  

In the poster we present some results obtained by means of our stellar evolutionary code once 
the disk accretion process has been considered during the early pre-MS phases. We computed a 
large dataset of evolutionary tracks by varying those parameters that mainly affect accreting 
stellar models, in order to investigate the final effect on theoretical stellar computations of young 
objects. 
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The models presented here have been calculated with the most recent version of the PROSECCO 
code, recently developed in Pisa from the well tested FRANEC stellar evolutionary code (see 
Tognelli et al. 2011, Dell’Omodarme et al. 2012, Tognelli et al. 1012). The main physical inputs of 
the code are: OPAL EOS06, SCVH95 EOS, OPAL opacities for log T > 4.5 and Ferguson et al. 
(2005) opacities for lower T, both calculated for the solar mixture by Asplund et al. (2009). 
Boundary conditions are obtained interpolating detailed atmosphere model tables in Teff, g and Z 
(Castelli & Kurucz, 2003 and Brott & Hauschildt, 2005). Convection is treated within the MLT 
framework, adopting our solar-calibrated αML = 1.74.  

The accretion process has been accounted for following the formalism described in Siess & 
Livio (1997), which is valid under the hypothesis of thin-disk accretion (see e.g. Hartmann et al. 1997). 

With respect to non-accreting models the main differences are listed in the following: 

-  Mass variation: the star gains mass at a given accretion rate (dm/dt). 

-  Chemical composition variation: accretion of material with the composition of the original 
cloud (i.e. fresh deuterium, which is important for the energetic of the accreting star).  

-  Energy modification: accretion of matter with a given amount of internal specific energy.  

The energy per second deposed inside the star (Ldep) by the accreted material is a fraction of the 
accretion luminosity (Lacc), 

  

where αacc is a free parameter that can assume values in the interval [0, 1] (e.g., Prialnik & Livio 1985, 
Hartmann et al. 1997, Siess & Livio 1997, Baraffe et al. 2009, 2010).  
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Theoretical predictions of surface 7Li abundances are strongly sensitive on the choice of αacc. It 
is interesting to notice the large depletion predicted in those cases corresponding to cold 
accretion models (almost independently of the adopted dm/dt or Mini), where even stars of about 
1.0 Msun destroy almost all their lithium content within few Myr. This result strongly conflicts with 
lithium data in young open clusters (i.e. age < 150 – 200 Myr), where stars more massive than 
about 0.9 – 1.0 Msun preserve their initial lithium content. This result is hint about the inability of 
cold accretion models to reproduce available observational data.  

We also mention that the choice of different accretion rates and/or accretion history is a simple 
way to introduce a dispersion on the predicted lithium abundances among stars with the same 
mass, effective temperature and age (Fig. 4, see also Baraffe et al. 2010). A similar dispersion seems 
to be present in young open clusters: thus, it could be worth to check if the accretion models 
can justify, at least in part, the observed lithium dispersion, a point that is currently under 
analysis by our group. 

The modelling of the accretion phase depends on the adoption of several parameters. We 
investigated the effect on the models of the following quantities: 

-  The mass of the initial protostar (seed mass of the first hydrostatic core): Mini = [5, 50] Mjupiter 
(Larson 1969, Masunaga & Inutsuka 2000, Boyd & Whitworth 2005, Machida et al. 2010) 

-  Accretion rate: dm/dt  = [10-7, 10-3] Msun/yr 

-  Accretion type (accretion history): constant, exponential decay, burst (Vorobyov & Basu 2005, 2006, 
2009, Machida et al. 2010) 

-  The accretion energy: αacc = [0, 1] 

The computations show that the main parameter that determines the luminosity and radius of a 
star at a given age during the accretion phase is the accretion energy, and in particular the 
adopted αacc value. If low-αacc values are used (cold accreting models), the star gains a quite 
small amount of energy from the accreting matter, which only marginally affects the evolution. In 
this case the accreting object evolves with small radii, contracting until high central 
temperatures are reached, and the star enters the ZAMS. The evolution after the end of the 
accretion phase is strongly different from the one obtained by non-accreting models (Fig. 1).  

However, the computations show that if αacc is larger than a critical value, αacc > αacc,crit (hot 
accreting models), the energy gained by the star acts to counterbalance and reverse the 
gravitational contraction. Such models evolve expanding from the early accreting phases 
reaching radii and luminosities similar to those of non-accreting counterparts close to the end of 
the total convective phase (Hayashi track, Fig. 1).  Such a critical αacc-value is found to be  αacc,crit 
≈ 0.2 (Fig.2, see also Siess & Livio 1997, Baraffe et al. 2009). 
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It is worth to check the ability of accretion models to reproduce the observations and in 
particular the positions of young stars in the HR Diagram. Figure 3 shows the position in the HR 
diagram of a few available data of young objects in several associations/clusters, compared to 
the predictions of standard tracks (i.e. without accretion), and to the maximum region of the HR 
diagram that can be populated by accreting models, by varying the parameters discussed above. 
This simple comparison shows that, in the scenario of thin-disk accretion, cold accreting models 
fail in reproducing data for M > 0.1 Msun. Hot accretion models (i.e. αacc > 0.2 - 0.5 at least during 
the burst or high accretion rate phases) are required to populate the region corresponding to 
bright and expanse structures, where observational data lie. 
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