Young Brown Dwarfs at Low Spectral Resolution
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Collegce of We are testing the utility of colors, very low resolution (R~30) near-infrared spectra, and optical mcerro Ca
Staten Islanca | through mid-infrared spectral energy distributions in distinguishing young, low-gravity objects from | | »- =

field brown dwarfs and in disentangling estimates of temperature and gravity. An increasing number
AMERICAN of young (~10-100s Myr) brown dwarfs are being discovered and characterized, and their
MUSEUM & observational properties are enticingly similar to directly-imaged planetary mass companions. Hu
Hfg;gﬁ# However, the ambiguity of the effects of physical parameters such as effective temperature, surface . '"“._ .
gravity, metallicity, and dust and clouds on observational properties is particularly troublesome at low | JREEASBASENESHESSNEIA i
effective temperatures (<2500 K). Developing efficient and reliable methods to characterize these
objects is of key importance to understanding the formation and evolution of substellar objects and | EESETINEEECLY crd CERCITEEEEE
the atmospheric properties of massive gas giant planets. We present preliminary results using g B s
PHOENIX model atmospheres and the extensive database of optical and near-infrared spectra and
parallaxes gathered by the BDNYC, our Brown Dwarf research collaboration based in "'ew York City.
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Model-based color diagnostics Low resolution NIR spectra Spectral Energy Distributions

We calculate a complete suite of colors from SDSS, 2MASS, and

We construct optical through mid-infrared spectral energy

. . 1.2 - =
WISE bands using synthetic spectra from BT-Settl CIFIST2011 _ 10 distributions for young late-type objects (red) and field objects
atmosphere models for a range of effective temperatures and Egg - ] of the same spectral type (black). Symbols with error bars
surface gravities at solar metallicity. Color-color plots below show T 04 are absolute magnitudes calculated from SDSS (circles), 2MASS
how colors change from high surface gravity (small circles) to low 3 02p - E (triangles), and WISE (squares) photometry and Brown Dwarf
surface gravity (large circles) connected by iso-temperature lines <Z§3 o 3 ; Kinematics Project parallax measurements (Faherty et al. 2012).
corresponding to the color bar. 1.0 ] J-band magnitudes calculated from SpeX/IRTF spectra were used
5.5 ! 3000 o ; to align the spectra to the absolute photometry.
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provide a complete characterization of the model parameter space. 1(4)0 o
Below: W2-W3 is temperature sensitive and W1-W2 is Fits to young objects produce lower temperature and similar Wavelength [;m)]

surface gravities compared to field objects of the same spectral

increasingly gravity sensitive at cooler temperatures. . ST T . o
type, likely indicating deficiencies in the simplistic dust treatment at

Above & below: Later spectral type objects are redder and

0.35 ? 3000 | 4 - less underluminous at longer wavelengths, and the reddest
: : ‘ Ow temperatures and gravities. free-floating brown dwarf (L5y) below, is overluminous at
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L i O ABO0 T e mid-infrared wavelengths. We expect the interplay between
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