Massive Jets from High-Mass YSOs
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Summary

Protostellar jets from high-mass young stellar objects (HMYSOs; M = 8 M) provide an excellent opportunity to understand the mechanisms responsible for high-
mass star formation. However, the sample of known high-mass protostellar jets is still limited and the jet physical properties are not well known. We present our
ongoing near-infrared imaging (H,, 2.12 pum) and spectral (1-2.5 um) survey of jets from a sample of HMYSOs. By using H, narrow-band imaging (Sofi/NTT,
NICS/TNG), we aim at verifying the shocked nature of 120 EGOs (Extended Green Objects) detected with Spitzer (Cyganowski et al. 2008), because the EGO origin
is not clear (e.g. Takami et al. 2012). Among these 120 EGOs, we indentify jets/outflows with a 44% success rate (Stecklum et al. 2009). In addition, several
jets/outflows from previously unknown HMYSOs were detected in this survey (Stecklum et al. in prep.). The morphology of the H, emission generally differs from
that of the 4.5 um excess, suggesting different excitation conditions. Through IR low-resolution spectroscopy (Sofi/NTT, R~600) we also derive the physical
properties of 16 bright massive jets (Caratti o Garatti et al. in prep.), relating them with those of their driving sources (with L, ;~102-10°L.). As for the low-mass jets
(Caratti o Garatti et al. 2006, 2008), we derive a clear correlation between the HMYSO bolometric luminosity (L,,) and the jet H, luminosity (Ly,), extending this
relationship over 6 order of magnitudes in the L, range (from 0.1 to 10°L.).
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Figure 7. Left: L, (jet) vs L, (source). The plot combines data from low-mass jets (Caratti o Garatti et al. 2006; blue, red  version of the low-mass one.
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