
not to scale

circumstellar disc

counterjet?

expanding,
momentum-driven
bubble

clumpy
ambient
medium

∼ 30–50 AU

∼ 350 AU
∼ 150 AU

observer

∼ 150 AU

dispersed
jet material

wide-angle
molecular
wind

recollimation
shock

turbulent entrainment layerturbulent entrainment layer

moving
shock-excited
knots

coupled jet expansion-acceleration

fast jet
400–700 km s−1

220 km s−1 320 km s−1

Stellar-subtracted extended [Fe II] 1.644 µm line emission, binned into 40 km s-1-slices, velocity range indicated in white, occulting 
disc over central star, 2005 observing epoch

Observations Model

Multi-epoch Spectroimaging of the 
DG Tauri Outflows with NIFS
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The outflows from young stellar objects provide important clues to the nature of the underlying accretion-ejection mechanism. We 
present unique high-resolution multi-epoch spectroimaging data of the outflows from the young stellar object DG Tauri, obtained 
using the Near-infrared Integral Field Spectrograph (NIFS) on Gemini North. These data reveal the presence of recollimation shocks, 
jet acceleration, entrainment, and bipolar outflow asymmetry, which we model to create a picture of the DG Tau system.
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Stationary recollimation shock
The approaching outflow is dominated by shock-

excited ‘knots’. In addition, we detect the presence 
of a stationary knot ~ 50 AU from the central star, which 
we intepret to be a jet recollimation shock [1].
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•	X-ray [6, 7, 8] and FUV [9] 
observations show a stationary 
feature with peak temperature  
≥ 106 K, followed by cooling over 
10 - 20 AU

[Fe II] 1.644 µm 
104 - 105 K [1]
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 10
5  K Soft X-ray 

source [6, 7, 8]
(2-4) × 106 K

X-ray temperature implies a pre-shock gas velocity 
~ 400 - 700 km s-1 →  Assuming an MHD wind, 

high-velocity jet launched from radius  
0.02 - 0.07 AU from star! [1] 

•	 Stationary shock feature, 
occurs in sufficiently fast MHD 
winds [4, 5]
•	 Magnetic collimation force 
exceeds centrifugal force of 
expanding, rotating outflow 
material, causing recollimation 
into a ‘diamond shock’
•	 Analogous to Mach disks 
observed in jet engines
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2 Jet kinematics and rotation

Approaching outflow components were separated 
using multi-component Gaussian fitting. This 
separates the jet (HVC) emission from the low- 
velocity component (LVC), which we interpret to be a 
turbulent entrainment layer.

Fits to approaching outflow components, showing jet 
(HVC) and entrainment layer (LVC)

Grey box: Previous rotation claims [12]. Dashed & dot-dashed lines: 
average velocity difference and ±1σ

Structure & kinematics of the approaching jet. Top panel, 
dashed line: jet ridgeline.

Jet shows coupled expansion-acceleration [1]
•	Jet velocities inconsistent with being intrinsic variations that cause 

moving knots → steady-state acceleration model required
•	Assuming constant jet total power Ljet and mass flux M (as observed), 

we form a magnetised Bernoulli-type equation:
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•	Assume a tangled jet magnetic field B, and neglect enthalpy (h) and 
gravity (φ). For the observed parameters of the DG Tau jet:

Distance 
from star

Jet velocity v e- no. density ne Jet diameter Jet magnetic 
field B

125 AU 220 km s-1 2 × 104 cm-3 18 AU 46 mG
275 AU 320 km s-1 1 × 104 cm-3 30 AU 29 mG

Magnetic field strength agrees with previous estimates of magnetic 
fields in protostellar outflows [1, 10]

No jet rotation observed [1]
•	Jets launched from a small radius (< 0.1 AU) around the central star 
are not expected to show significant rotation [11]
•	Passage through recollimation shock is likely to mask any rotation 
signal present
•	Changing position of the jet centre (ridgeline) must be taken into 
account

2

3

(⇢ = 1.4(ne/χe)⇥ amu)

We have modeled coupled jet expansion-acceleration [1] and entrainment [3] in 
the DG Tau approaching outflow. No jet rotation is observed [1]. 

Passage through the recollimation shock slows the jet and concentrates the 
magnetic field, leaving the jet susceptible to these processes [1].

3 Turbulent entrainment by the jet
•	 Wide-angle molecular wind provides material for jet to entrain [13] 

•	 Toroidal magnetic field which collimates the jet destabilises the jet-wind interface 
to the Kelvin-Helmholtz instability [1, 14, 15]. Leads to the formation of a turbulent, 
shock-excited entrainment layer, producing shock-excited [Fe II] emission.
•	 We have successfully modeled this entrainment process using an analytical two-
dimensional ‘slab’ model and turbulent MHD - stay tuned! [3]

4 Receding outflow bubble

Redshifted [Fe II] 1.644 µm line  
emission, 2005 observing  
epoch

Simulation of 
light AGN jet 
(blue) penetrat-
ing a warm, clumpy 
distribution of material 
(orange) [18]

We have modeled this structure as a receding 
counterjet being obstructed by the flattened, 

clumpy molecular envelope around DG Tau [16]. The jet 
then creates a momentum-driven bubble [2].

Vertical line: outflow event age as at 2005 [20]. Grey box: Range of 
possible bubble heights [2]

Model is consistent with observations [2]. 
This model explains structural bipolar outflow 

asymmetries in YSOs.

•	No mixed blue/redshifted emission → cannot be a bow shock
•	The jet drives a momentum-driven bubble as it searches for an ‘escape 

path’, similar to the propagation of AGN jets [17,18]
•	We modify a previous momentum-driven bubble model [19]. We assume 

the DG Tau system drives symmetric jets with equal age, t, mass loss rate, 
Mj, and velocity, vj, and that the bubble has elongation f:

O
bs

cu
ra

tio
n 

by
 

ci
rc

um
st

el
la

r d
is

c

Model predicts an ambient 
density, ρA, equivalent to  

nH ~ 106 cm-3 ≈ density of the 
extended DG Tau molecular 

envelope [2, 15]
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