Multi-epoch Spectroimaging of the
. DGHhauri{@utflowsiwithiNIES

Marc White!, Peter McGregor!, Geoff Bicknell!, Raquel Salmeron', Ralph Sutherland’,
Iracy Beck?, Alex Wagner3 marc.white@anu.edu.au | http:/ /www.mso.anu.edu.au/~mwhite

Background image credit: NASA /JPL-Caltech/R. Hurt (SSC)

'Research School of Astronomy & Astrophysics, The Australian *Space Telescope Science Institute, Baltimore, Maryland, USA
National University, Canberra, ACT, Australia *Center for Computational Sciences, Tsukuba University, Japan

The outflows from young stellar objects provide important clues to the nature of the underlying accretion-ejection mechanism. We
present unique high-resolution multi-epoch spectroimaging data of the outflows from the young stellar object DG Tauri, obtained
using the Near-infrared Integral Field Spectrograph (NIFS) on Gemini North. These data reveal the presence of recollimation shocks,
jet acceleration, entrainment, and bipolar outflow asymmetry, which we model to create a picture of the DG Tau system.

Observations Model

Stellar-subtracted extended [Fe II] 1.644 um line emission, binned into 40 km s?-slices, velocity range indicated in white, occulting
disc over central star, 2005 observing epoch ~ 150 AU
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Approaching outflow components were separated
using multi-component Gaussian fitting. This
separates the jet (HVC) emission from the low-
velocity component (LVC), which we interpret to be a
turbulent entrainment layer.

Stationary recollimation shock

- Knot ejection period of 4.9 yr

The approaching outflow is dominated by shock-

excited ‘knots’. In addition, we detect the presence

of a stationary knot ~ 50 AU from the central star, which
we intepret to be a jet recollimation shock [1].
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e Jet velocities inconsistent with being intrinsic variations that cause 03
moving knots — steady-state acceleration model required
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Structure & kinematics of the approaching jet. Top panel,
dashed line: jet ridgeline.
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Blueshifted stellar-subtracted extended [Fe II] 1.644 ym line emission, occulting disc over
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observations show a stationary X-ray temperature implies a pre-shock gas velocity fom star (p = 1.4(nq /) x amon)
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We have modeled this structure as a receding R

counterjet being obstructed by the flattened,
clumpy molecular envelope around DG Tau [16]. The jet
then creates a momentum-driven bubble [2]. |
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No jet rotation observed [1]

e Jets launched from a small radius (< 0.1 AU) around the central star
are not expected to show significant rotation [11]

e Passage through recollimation shock is likely to mask any rotation
signal present

e Changing position of the jet centre (ridgeline) must be taken into

account
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e No mixed blue/redshifted emission — cannot be a bow shock | | - ) -
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 We have modeled coupled jet expansion-acceleration [1| and entrainment [3] in )
(" Model is consistent with observations [2]. the DG Tau approaching outflow. No jet rotation is observed [1].
e age. £ (vr This model explains structural bipolar outflow Passage through the recollimation shock slows the jet and concentrates the
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possible bubble heights [2]
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