Emma Whelan, Institut für Astronomie und Astrophysik, Tübingen
Tom Ray, Fernando Comeron, Francesca Bacciotti, Patrick Kavanagh

Abstract

Summary The $24 \mathrm{M}_{\mathrm{jup}}$ brown dwarf (BD), 2MASSJ12073347-3932540 (2M1207A), was first discovered to be driving an outflow through the spectro-astrometric analysis of its [OI]6300 proper motion is detected in the [SII] knots there are morphological changes. It is possible that the velocity of the knots has slowed significantly with distance. From the

Outflow Discovery

Whelan et al. 2007 reported the discovery of an outflow from the $\mathbf{2 4} \mathrm{M}_{\text {JUP }}$ BD 2M1207A. The presence of an outflow was confirmed by applying spectro-astrometry (SA) to the study the origin of the $[O I] \lambda 6300$ emission line region. The data was taken with UVES on the ESO VLT. The [OI] 6300 line was double peaked and SA revealed that the red and blue-shifted emission was offset in opposing directions and thus was tracing a bipolar outflow. 2M1207A was already known to have a near edge-on disk (Mohanty et al. 2007). The detection of both blue and red-shifted outflow lobes plus the small radial velocities of the lobes were consistent with an edge-on disk scenario. The radial velocities of the blue and red lobes were measured at $+4 \mathrm{kms}^{-1}$ and $-8 \mathrm{kms}^{-1}$ respectively. A second UVES spectrum at an approximately orthogonal position angle to the first was obtained in August 2008
(Whelan et al. 2012). The spectro-astrometric analysis was repeated and the results confirmed. As the two spectra were taken at orthogonal PAs they could be combined to recover the PA of the outflow. The PA of the blue-shifted outflow is $\mathbf{6 5}{ }^{\circ}+/-10^{\circ}$. In Figure

1 the SA of the $[\mathrm{OI}] \lambda 6300$ line in the 2008 spectrum is shown. Figure 2 demonstrates how the the two spectra were combined to constrain the PA of the jet.

This was an important result as $2 \mathrm{M1207A}$ is the lowest mass object known to drive an outflow, thus a study of the properties of this outflow can help to constrain how outflows behave at the lowest masses. At this stage in the investigation of this outflow it was not known if the outflow was collimated i.e. was a jet.

Figure 1: SA of the $2008[\mathrm{OI}] \mathbf{\lambda 6 3 0 0}$ line. The SA clearly confirms the Whelan et al. 2007 results, that the blue and red peaks are offset in opposing directions. The dashed line marks the $1-\sigma$ error in the centroid fitting.

Figure 2: The spectroastrometric signatures measured in the [OI] 16300 line in 2006 and 2008 are
combined to constrain the combined to constrain the
outflow PA. Note that the x outflow PA. Note that the x
and y axes do not represent and y axes do not represent
orthogonal slit PAs but rather PAs of 0° and 80°
email: emma.whelan@astro.uni-tuebingen.de

* This work is based on data taken with UVES and FORS $1 / 2$ on the eso VLT
* This work is supported by the Emmy Noether Research Grant SA 2131/1 of the Deutsche Forschungsgemeinschaft and the BMWi/DLR grant FKZ 50 OR 1309

It's a Jet

VLT / FORS-1 images of 2M1207A in [SII], I and R were also obtained in 2008 (Whelan et al. 2012). The point spread function (PSF) of 2M1207A in the [SII] images was found to be elongated in the direction of the outflow as suggested by the spectro-astrometric analysis. This elongation was not seen in other stars in the image or in the R and I band images and thus was strong evidence of the detection of the outflow. Additionally 4 knot-like features (labelled A to D) were detected along the PA of the outflow and the final feature was bow-shock shaped with the apex pointing away from 2M1207A. While this was compelling evidence that these features were shocks in the 2M1207A outflow further confirmation was needed. To test that A to D were Herbig-Haro (HH) objects we prepared a [SII]-I v R-I color-color diagram (Figure 4). A HH object is expected to display a blue broadband R-I color due to the contribution of the Halpha and [SII] 6716, 6731 lines to the R band, and an even bluer [SII]-I color caused by the larger fraction of the [SII] filter passband in which [SII] emission is detectable. This is in contrast with the redder R-I and [SII]-I colors of continuum- dominated sources like stars and normal galaxies. Therefore this analysis should separate any HH objects from stars and galaxies. B and C were omitted from this test as they were too faint for their colors to be measured.
It is clear from Figure 4 that A is either a star or galaxy while D is a $\mathbf{H H}$ object. This conclusion is further strengthened by comparison with the knots in the ESO-H $\alpha 574$ outflow. ESO-H $\alpha 574$ powers a well-developed bipolar jet first observed by Comeron \& Reipurth (2006).

This detection of knots in the 2M1207A outflow demonstrates that it is well-collimated. This observation confirms that BD outflows can be collimated like low mass protostellar jets, further adding to the properties they share. Thus the 2M1207A outflow is more accurately described as a jet. Also note that it is episodic analogous to protostellar jets.

Figure 3: Gaussian
smoothed [SII]-I image. 4 separate emission features
are revealed with the final are revealed with the fina one having a clear bowshock shape. The positions
of the features are well of the features are well fitted with a PA of 245° which is the same PA as estimated from the spectroastrometry. These knots lie in the direction of the redshifted flow

Figure 4: The aim of this analysis is to compare the colors of the objects in the TW Hya images with synthetic colors and with an analysis of the protostar ESO-HA 574 and its associated HH objects, in order to test if the faint knot-like features A and D
are also HH objects. The squares represent synthetic colors, the circles colors are also HH objects. The squares represent synthetic colors, the circles colors
estimated from spectra, the triangles represent objects in TW Hya included in th FOV of the 2M1207 images and the asterisks represent objects in Cha I included in the FOV of the ESO-HA 574 images. The red arrow is the reddening vector. Specifically the blue squares are synthetic colors for blackbodies in the range 20000
K to 1500 K , calculated in the range of the FORS1 filters. The purple circles K to 1500 K , calculated in the range of the FORS1 filters. The purple circles are the color estimates for the knots HA574-A, HA574-B and HA574-E, calculated from XSHOOTER spectra. The black asterisks are stars in Cha I and the purple asterisk
marks the color of HA574-E measured from the image. The black triangles are stars marks the color of HA574-E measured from the image. The black triangles are stars
in the TW Hya region, the purple triangles are identified galaxies and the green triangles features A and D. The marked errors in the colors for HA574-E and A, D are quite large while the errors for the other points are found to be <0.02. The position of feature \mathbf{D}, the bow-shock shaped feature lies with the other known HH objects while A lies amongst the stars and galaxies. Based on this analysis and other evidence discussed we conclude that D is a shock in the 2M1207A outflow

2013 Images

Figure 5: Comparing knots B C and D as imaged in [SII] in Jan 2008 and Jan 2013. Feature A, identified as a background star or galaxy is that this feature is wellaligned between the two aligned between the two
epochs. There is no significant shift in the knots, which could be expected if the jet velocity be expected with distance from has slowed with distance from the proper motion of the source on PA and relative positions of the knots needs to be investigated. While there is no shift in position the norphology of the knots do appear to have changed.

Figure 6: Comparing the knots in $\mathrm{H} \alpha$ (pink) and [SII]. Th H α is shifted toward the front of the knots as compared to the [SII]. This would support a scenario where the H α front and the [SII] front and the [SII] behind the shock This is typically see This is typically see
in HH objects

To follow-up from the 2008 imaging study [SII] and H α FORS-2 images were observed in early 2013. The motivation was to look for proper motions in the knots by comparing the two sets of [SII] images and to also compared the knots in [SII] and Ha. By combining the radial velocity measurements with an estimate of 690 for the disk inclination angle (Riaz et al. 2012) an estimate of $20 \mathrm{kms}^{-1}$ can be made for the jet velocity. This would mean a movement of 0 " .5 between the two images.
A very important consideration here is the proper motion of the driving source itself. Song et al. 2006 report the proper motion to be $\alpha=-62.7$ mas and $\delta=-19.9$ mas. The resultant motion is approximately $18 \mathrm{kms}^{-1}$ along a PA of 252°. Thus the proper
motion of the jet is comparable to the proper motion of 2M1207A and is in the same general direction. An important consequence of this is that the driving source would have moved by a significant amount in between the ejections of knots B, C and D. This would effect their relative positions and thus the morphology of the jet.

In Figure 5 we compare the [SII] jet in 2008 and 2013. The motion of the source has been removed and so any motion is intrinsic to the jet. While the morphology of the knots does seem to have changed there is no significant motion over the 5 year period. The radial velocity of the jet was estimated from the [OI] line at the source position. It is likely that the knots could have slowed by an amount large enough to make their proper motion undetectable in this study.

In Figure 6 we compare the [SII] (black contours) and $\mathrm{H} \alpha$ (pink contours) images of the knots. What is striking is that the Ha knots have a different morphology, especially D, are shifted with respect to the [SII] knots and appear to trace the front part of the knots. This is what we expect if the $\mathrm{H} \alpha$ is tracing the hot material at the shock front and the [SII] the cooling zone behind.

