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ABSTRACT

The evolution of the outflow is followed with resistive magnetohydrodynamic nested-grid
simulations that cover a wide range of spatial scale (1 AU -- 1 pc). We follow the cloud
evolution from the prestellar core stage until the infalling envelope dissipates long after
the protostar formation. We also calculate the protostellar evolution to derive the
protostellar luminosity with time-dependent mass accretion through a circumstellar disk.
The protostellar outflow is driven by the first core before the protostar formation, and
directly driven by the circumstellar disk after the protostar formation. The opening angle
of the outflow is large in Class O stage. A large fraction of the cloud mass is ejected in this
stage, which reduces the star formation efficiency down to < 50 %. After the outflow
breaks out of the natal cloud, the outflow collimation is gradually improved in Class |
stage. The head of the outflow travels over 1075 AU in 10”75 yr. The outflow momentum,
energy, and mass derived in our calculations agree well with observations. Our simulations
also show the same correlations between the outflow momentum flux, protostellar
luminosity, and envelope mass as seen in observations. These correlations differ between
Class 0 and | stages, which is explained by different evolutionary stages of the outflow; in
Class O stage the outflow is powered by the accreting mass and acquires its momentum
from the infalling envelope, and in Class | stage the outflow enters the momentum-driven
snow-plow phase. Our results suggest that the protostellar outflow should determine the
final stellar mass and significantly affect the early evolution of the low-mass protostars.



Protostellar Evolution v.s. Outflow
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Theoretical tracks?



MHD Simulations

State-of-the-art MHD simulations now follow the launching and
long-term evolution of the protostellar outflows.
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stellar mass increases with the
time-dependent mass accretion rates

How is this related to the protostellar evolution?

Let’s see it combining the MHD simulations
and stellar evolution calculations!



Stellar Evolution Calculations
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Momentum : p Heat transport : Im . Panh
“COLD” mass accretion ‘HOT” mass accretion \

Shock

Supersonic flow .
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photosphere

Accretion
disk

Gas softly accretes to the protostar Accretion flow directly hits the stellar
through the disk. Accreting materials surface. A part of the entropy generated
join the star with the same entropy as | at the shock front is taken into the stellar
in the stellar atmosphere. interior.

The evolution doesn’t depend
on initial models.
(also see, e.g., Hosokawa, Offner & Krumholz 2011)



Cases Considered

Follow the collapse and subsequent accretion stage beginning with various
settings of molecular cloud cores, e.g., with different magnetic fields, rotation,
and core masses

Model M (Mp) By (G) Qo (s71)
1 1.05 78 x 1078 1.0x 10713 | B fields
2 1.05 18x 10> 10x10713
[ 3 1.05 25x 105 10x10" 1 | fiducial case
4 1.05 50x 107 1.0x 107" gronger B-fields
- I O S 74x10> 10x10°0° oo
6 1.05 25x 107 1.0x 107" (ower rotation
7 1.05 25x 1070 52x 107!
I 1.05_____. 2.5x 1077 2.1x10713 _ fasterrotation =~
9 1.6 25x 1070 2.1x10713

more massive cores




snapshots in model #3 (0.15 Myr after the birth of the protostar)
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(@)t=0yr (b) t =9.252x10% yr (c) t =9.834x10% yr

=-9.186x10" vr =657 yr =6.478x10°% yr
fes y fos y Molecular Outflow fps d

Density Distribution
12000AU > Molecular Cloud Core (color of each cutting plane)

(d) t = 1.025x10° yr (e) t=1.343x10%yr (f) t=1.736x10° yr
tos = 1.067x10° yr tos = 4.204x10% yr tps =8.176x10% yr
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Theoretical Tracks v.s. Obs.
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Pretty good agreement with obs.!



Dependence on different B-fields & spins
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+ plotted every 1000 yesars (0: class 0 / ®: class |).
the distributions of class 0/l sources also agree with the observations
+ scatters depending on the different magnetic fields and cloud rotation
given for the initial conditions




Summary

We have obtained theoretical tracks which connect the protostellar evolution and

outflow activity, combining the MHD simulations and stellar evolution calculations.
Our theoretical tracks agree well with the observations.

jet (high velocity)
outflow (low velocity)

¢ Note 2%

Our results do not stands on the classical picture

of the entrainment of molecular outflows by
high-speed jets (optical jets).
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accretion

The outflow is driven from the circumstellar disk.

In the current simulations, the jet does NOT appear

without resolving the very vicinity of the protostar.

\first core
\

protostar
(second core)

Machida, Inutsuka & Matsumoto (2008)

_ The observational properties of the molecular
. r d outflow are explained without any effects of
circumstellar disk 2 .

the jet.




