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Abstract Method

I . L Parameters:
One of the outstanding challenges in star formation is the angular momentum problem. Angular momentum « 20 : Magnetic field strengeh (Alfvén speedisound speed at the

transport is required to allow a cloud core to collapse to form a star [1]. Angular momentum in the initial midplane,)
collapsing cloud prevents the majority of material falling directly onto the protostar, instead settling into a  Ao:Degree of coupling between the neutrals and magnetic field,

circumstellar disk around it. Angular momentum must then be redistributed to allow material to accrete. * € :Normalised inward radial speed at the midplane,
* n :Diffusivity regime, characterised by the normalised Ohm, Hall

. . . N . ) . R and ambipolar diffusivities (o, Nu and Na respectively).
Radial transport of angular momentum is accomplished via the magnetorotational instability (MRI; [2]). Vertical

angular momentum transport has generally been attributed to centrifugally driven winds (CDWs) from the ID disk wind solutions [4, 7, 8]:
disk surfaces (e.g. [3], [4]). Both modes of transport depend on the strength of the local magnetic field, The governing equations are integrated in the z direction
parametrised by the ratio of the vertical Alfven speed to the isothermal sound speed, ao. MRl is expected to from the disk midplane up to the sonic point (v; = ¢;)
dominate in the presence of weak fields (a0 « I) [5], whereas CDWs require a strong field (a0 = I). 1+1D disk wind solutions:

The total mass flux M, determines the outer extent of
Here we present calculations of the structure of strongly magnetised protostellar disks (a0 = I), with midplane the wind-driving region of the disk, satisfying the
density and temperature as in the minimum-mass solar nebula model ([6]) around a solar-mass star, focusing
on the regions of these disks that may launch a CDW from their surfaces. These models explore the effect of
the magnetic diffusivity in protostellar jet launching, and the connection between the disk properties and the
large-scale features of jets.

inequality €/\o < vk/2¢s [10]. The wind-driven mass
loss, Mw{(r), is calculated and subtracted from M, giving
an accretion rate, Ma(r). This is solved radially inwards,
until no physically viable wind solution exists.

Protostellar winds and accretion Radial extent of wind launching region Two sided Mu/M, for different M and regime (see Figure 4)
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. . A N Regime M = 1.00x10¢ M =3.16x10¢ M = 1.00x10° M = 3.16x10°
(outto ~ 0.06 S— Field Lines pure ambipolar and Hall diffusion regimes. Model &

parameters are ao = 1.0 and Ao = 5.0 [see right panel Ambipolar o.101 0.153 0.186 0.226
above]. The Hall regime dominates at the midplane at - B e DI e
/ / / radii between |-10 AU, whereas the ambipolar regime ? - - - -
) is dominant at >10 AU [8].
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10 One plus one-dimensional wind-driving disk solutions

for Ma = 105 Mo/yr in the ambipolar and Hall regimes
\ are shown in the figures below. The white lines show

\1 X the boundaries of the three wind zones (see Figure 2).

. The arrows depict the poloidal velocity field and the
Ambipolar B~ :
pink lines trace the magnetic field geometry.

Figure |. Schematic, not-to-scale diagram of a
protostellar disk, showing the radially extended ‘disk-
wind’ and ‘X-wind’ regions [9].

Figure 5. Ambipolar Regime

Particle density in o wind—driving disk up to the sonic point

Accretion rate M, (Mo /yr)

centrifuga"y Geiven wind [4]’ [IO] Ambipolar : [no,nm,m4] = [0.01,0.0,0.19]
Centrifugally driven winds can be divided into three Hall : [0, n#,m4] = [0.01,0.16,0.11]
distinct zones: 1075 ‘
* A quasi-hydrostatic zone where the bulk of the
matter is concentrated and most of the field-line
bending takes place. In this region, the neutral gas The ratio Mw/Ma
looses angular momentum to the magnetic field.

e A transition zone where the inflow gradually
diminishes with height and the field becomes locally
straight.
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An important observational constraint on disk-jet 9.024+10)
systems is the ratio of the mass lost in the wind to the
mass accreted onto the central protostar. Typical ratios

R for a bipolar jet are in the range 0.1 to 0.2 [I1]. Figure
An outflow zone that corresponds to the base of the 4 shows the radial dependence of this ratio from our
wind. The magnetic field lines overtake the matter and models

propel it out centrifugally. - ()
Accrlgti?sn rates in an ambipolar disk with M = 10- Mo /yr Figure 6. Hall Regime
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Figure 2. Schematic, not-to-scale diagram of a CDWV [4]
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