miotello@mpe.mpg.de

Grain growth in the envelopes of Class I protostars A. Miotello^{1,2,3,4}, L. Testi^{1,5,6}, G. Lodato², L. Ricci⁷, G. Rosotti^{3,5}, K. Brooks⁸, A. Maury⁹, A. Natta^{6,10}

¹ European Southern Observatory, ² University of Milan, ³ MPE Garching, ⁴ Leiden Observatory, ⁵ Excellence Cluster Universe, ⁶ INAF-Arcetri, ⁷ CALTECH, ⁸ ATNF, ⁹ CfA, ¹⁰ DIAS

Many observational results (Testi et al. PPVI review) indicate that the vast majority of the protoplanetary disks in the Class II phase contain mm- and cm-sized grains. This implies that the formation of these large particles is a fast process that occurs in the early stages of disks or possibly even earlyer. Pagani et al. (2011) have shown that micron-sized grains are already present in prestellar cores, while mm-sized particles may have been detected in Class 0 YSOs envelopes (Chiang et al. 2012).

GOAL

The aim of this work is to constrain the level of grain growth in Class I YSOs, where the contribution of the envelope emission can be separated by the disk one, using mm-interferometry.

Analysis

 Fig. 1 and 3: visibilty amplitudes of Elias29 and WL12: with archival 1.1 mm SMA data (Jørgensen et al. 2009) and new 3 mm ATCA dataset.

 Emission rises at the shortest baselines: presence of an envelope

 Emission at the long baselines converge to a constant non-zero value: presence of an unresolved embedded disk.

 \circ Under the optically thin assumption and the Rayleigh-Jeans approximation: unusually low $\alpha,$ for both disk and envelope.

Modeling of the disk and envelope structures, using radiative transfer codes, is needed.

Disk modeling

Envelope modeling

Two-layer disk model (Dullemond et al. 2001).
Free parameters: disk outer radius *Rout*, mass *Mdisk* and the grains maximum size *Amax*.

 Rotating and collapsing envelope model as derived by Ulrich et al. 1976.

 Envelope temperature structure computed using the Monte Carlo radiative transfer code RADMC-3D (Dullemond & Dominik 2004). Central heating source star+disk.

Envelope mass Menv and amax left free to vary.

Fig. 1 Visibility amplitudes. The data points give the amplitudes per bin. Amplitudes of Elias 29 (top panels) and WL12 (bottom panels): on the left, archival 1.1 mm SMA dataset (Jørgensen et al. 2009), on the right new 3 mm ATCA dataset. The open triangles: zero spacing 1.1 mm fluxes, interpolated between 850 μ m and 1.25 mm single dish fluxes (Lommen et al. 2008; Jørgensen et al. 2009). Orange lines are the best fits, obtained using the two-layer disk model (Dullemond et al. 2001) combined with a rotating and collapsing envelope model implemented on RADMC-3D (Dullemond & Dominik 2004).

Elias 29 Either a small optically thick disk (Rout~15 AU, Mdisk~0.07Msun), where we cannot constraint the dust properties, or a relatively large (*Rout*~50-200AU) optically thin disk populated with large pebbles. WL12 \circ Compact and optically thick disk with radius Rout~30 AU and mass between 0.3 and 0.8 solar masses. We can not constrain the dust properties.

Big grains in the envelopes

 Micrometer-sized grains do not explain the observations both at 1mm and 3 mm, while mm-sized ones do (Fig.3).

10 100 F_{ν, λ=3mm} [mJy]

REFERENCES: Chiang et al. 2012, ApJ, 490, 368 • Dullemond et al. 2001, ApJ, 560, 957 • Dullemond & Dominik 2004, A&A, 417, 159 • Jørgensen et al. 2009, A&A, 507, 861 • Lommen et al. 2008, A&A 481, 141 • Pagani et al. 2011, EAS, 52, 225 • Ricci et al. 2010, A&A, 521, A66