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Introduction: We use the adaptive mesh refihement code RAMSES [1,2] to
model the formation of proto-planetary disks in a realistic star formation environ-
ment, with resolution scaling over 29 ‘levels of refinement’ (powers of two);
about 9 orders of magnitude, covering a range from an outer scale of 40 pc to
an inner scale of 0.015 AU. Done for one case so far; a larger study will follow.

The purpose of this procedure Is to characterize the typical properties of accre-
tion disks around solar mass protostars, with as few free parameters as pPossi-
ble. This Is a vast improvement over models where initial and boundary condi-
tions have to be chosen arbitrarily. Here, the Initial and boundary conditions follow instead from the well-
observed statistical properties of the interstellar medium [3,4,5,..]. The Idea Is similar to studying galaxy for-
mation starting from calibrated cosmic micro-wave background fluctuations.

Method

Three step simulations:

Results of this first case study

Over a time Interval of 5-6 kyr the accretion rate grows to
a maximum of about 6-10™ solar masses per year, and
then starts to decline, with fluctuations mainly due to re-
arrangements of the magnetic field. Henceforth the ac-
cretion rate decays essentially exponentially with time,
reaching 10°° solar masses per year in about 100 kyr (we
have seen other cases with both shorter and longer time
scales). The radial mass profile scales similar to free-fall
accretion (cf. adjacent poster), with the magnetic field
carrying away excess angular momentum and energy.

Step 1: follows individual star
formation in a 40 pc GMC model
over about 10 Myr, using 16 lev-
els (smallest cell size ~120 AU)

Step 2. follows the accretion
process of a selected solar
mass star over about 0.2 Myr,
using 22 levels (smallest cell
size ~ 2 AU)
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Transport of SLRsS Disk Replenishment Times
As a byproduct of this type of modeling, A remarkable property of the system is the rapid turn-
= which starts out from a supernova driven around of mass: The disk replenishment time, defined
B interstellar medium, we can follow the as the mass of the disk (here out to 5 AU) divided by
transport of short-lived radionuclides the mass accretion rate is initially much smaller than
(SLRs), from the time of ejection by su- the disk life time, with the ratio increasing as the ac-
pernovae until they become part of pro- cretion rate drops faster than the mass of the disk.
toplanetary disks.
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