Observational Constraints on Accretion Disk Formation

D. Harsono^{1,2}, J. K. Jørgensen³, E. F. van Dishoeck^{1,4}, M. R. Hogerheijde¹, S. Bruderer⁴,

M. V. Persson¹, J. C. Mottram¹

(1) Leiden Observatory, The Netherlands; (2) SRON, Groningen, The Netherlands; (3) StarPlan, University of Copenhagen, Denmark; (4) MPE, Germany

Why:

Disks are important for star and planet formation, but how and when they form during the early stages of star formation is heavily debated.

What:

Identify and characterize **rotationally supported** disks near the end of the embedded stage of star formation (Class I).

Conclusions:

Rotationally supported structures extend up to 100 AU, while infall motions dominate at scales > 100 AU.

1

The sizes of embedded disks derived from the continuum do not always correspond to the sizes of the rotationally supported disk.

How:

Spatially and spectrally resolved observations with IRAM PdBI to measure the size of embedded Keplerian disks with ¹³CO and C¹⁸O lines.

Rotation

I. Infall vs. Rotation

Keplerian disks grow rapidly near the end of the accretion phase when the stellar mass dominates the system mass.

II. Dust vs. Gas Disks

¹³CO velocity profile toward TMC1A that is best fitted with a rotating structure ($v \propto r^{-0.5}$). Inset: C¹⁸O moment 1 map within the inner 5" showing the blue and red-shifted rotating disk. Rotation dominates the inner 100 AU radius, while infalling structures dominate >100 AU scales⁴.

III. Observed Embedded Disks

	TMC1A	TMC1	TMR1	L1536IRS
Keplerian Radius	80-100 AU	100	< 50	80
$M_{\star} [\mathrm{M_o}]$	0.45	0.4	•••	0.8
$M_{ m disk}$	0.075	0.024	0.011	0.034

The sample

Sources: TMC1A, TMC1, TMR1, L1536IRS

Distance: 140 pc; Disk Radii: 80-100 AU

Envelope Masses: 0.1 M

Disk Masses: 0.004-0.075 M

Acknowledgments. Based on observation carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain). We thank IRAM staff, especially Chin-Shin Chang and Tessel van der Laan, for their help with the observations and reduction.

References:

1. Lommen, D., et al. 2008, A&A, 481, 141 2. Jørgensen, J. K. et al. 2009, A&A, 507, 861 3. Harsono, D. et al. 2013, A&A, 555, 45 4. Yen, H.-W. et al. 2013, ArXiv

5. Takakuwa, S. et al. 2012, ApJ 754, 52 6. Tobin, J. J. et al. 2012, Nature, 392, 83 7. Murillo, N. M. et al. submitted 8. Visser, R. et al. 2009, A&A, 395, 881