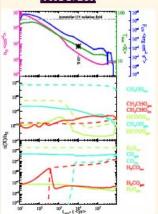
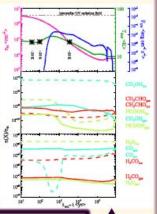
Complex Organic Parents during Star-Forming Infall



M.N. Orvedovskyya¹, C. Walsh¹, R. Visser¹, D. Harsono¹, E.F. van Dishoeck^{1,2}

Leiden Observatory, Leiden. The Hetherlands *Max-Glanck-Institut für myraterestrische Ghysik, Garching, Germany *Ospanment of Astronomy, University of Michigan, Run Arbor, ML U.S.A.


Hot Parcel

Motivation

- Young star forming systems set the initial conditions for planet and comet formation
- Complex organic molecules formed at the early stages of star formation may be important for the prebiotic chemistry of planetary systems
- Precise physical and chemical evolution with time may have profound significance on the complex organic compound budget
- Organic molecules formed during the cold (early) phase of star formation are the parents of other, more complex, species

Cold Parcel

The infall path influences the abundances of complex organics entering the disk

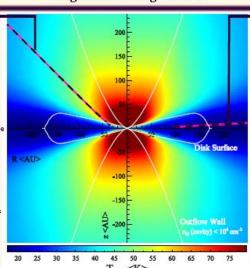
Model

2D, semi-analytical model (Visser et al. 2009, 2011)

pre-stellar core
protostar & circums tellar disk

.Physics of a collapsing envelope

- & viscously evolving disk


 Full time-dependent radiative
 transfer treatment of the dust
 (RADMC3D, important for
 thermal description)
- 3. a. Chemis try for the quies cent pre-stellar stage (10⁶ yr)
 b. Chemis try along trajectories
- Chemis try along trajectorie for pancels of matter

Chemical network contains gasphase reactions, grain-surface chemistry and gas-grain interactions.

(McElroy et al. 2013, Walsh et al. 2010, Garrod et al. 2006 and references therein)

Results

- Solid-state CH₃OH is efficiently formed by grain-surface thems by during the quiescent pre-stellar phase (up to n(CH₂OH)/n_H = 10⁻¹) and ircreases during infall by a factor of 5
- Gas-phase CH₃OH is released from the icy grain mantles via photodesorption during collapse; its abundance is enhanced by at least 2 orders of magnitude
- The stronger UV radiation encountered by the hot panel releases more CH₂OH into the gas, in comparison with the cold parcel (by a factor of 3.5)
- HCOOH ice is also efficiently formed by radical-radical reactions on the grains, but at slightly elevated temperatures (T_{bac} ≥ 26K) and this at later times than CH₂OH
 The pre-stellar abundance of
- The pre-stellar abundance of CH₃CHO ice is preserved for both parcels
- Other complex organics are not efficiently formed for these trajectories in this particular model (n(X)/n_H ≤ 10⁻¹¹)

Maria Drozdovskaya drozdovskaya@strw.leidenuniv.nl