THE HIFI SPECTRAL SURVEY OF MASSIVE STAR-FORMING REGION AFGL 2591

MAJA KAŹMIERCZAK¹, FLORIS VAN DER TAK^{1,2}, FRANK HELMICH^{1,2}, LUIS CHAVARRÍA³, KUO-SONG WANG⁴ AND CECILIA CECCARELLI⁵

¹ SRON NETHERLANDS INSTITUTE FOR SPACE RESEARCH, LANDLEVEN 12, 9747 AD GRONINGEN, THE NETHERLANDS; ² KAPTEYN ASTRONOMICAL INSTITUTE, UNIVERSITY OF GRONINGEN, PO BOX 800, 9700 AV, GRONINGEN, THE NETHERLANDS; ³ CENTRO DE ASTROBIOLOGÍA (CSIC-INTA), LABORATORIO DE ASTROFÍSICA MOLECULAR, CARRETERA DE AJALVIR, KM 4. TORREJÓN DE ARDOZ, 28850 MADRID, SPAIN; ⁴ LEIDEN OBSERVATORY, LEIDEN UNIVERSITY, PO BOX 9513, 2300 RA, LEIDEN, THE NETHERLANDS; ⁵ UJF-GRENOBLE 1/CNRS-INSU, INSTITUT DE PLANÉTOLOGIE ET D'ASTROPHYSIQUE DE GRENOBLE (IPAG) UMR 5274, GRENOBLE, FRANCE

7501 1. Argl 2371

4. Observed parameters

- AFGL 2591 high mass protostellar object with a bipolar outflow (van der Tak et al. 1999)
- Iocated in the Cygnus X region $(l, b) = 78.^{\circ}9, 0.^{\circ}71$
- relatively isolated massive star-forming region
- \blacktriangleright distance = 3 kpc (Rygl et al. 2012)

2. Spectral survey

- CHESS Chemical HErschel Surveys of Star forming regions (Ceccarelli et al. 2010) - Herschel Guaranteed Time Key Programme
- ► Herschel/HIFI (480 1900 GHz)
- ► 268 lines were found of 32 species

Line profiles:

5. Column densities & temperatures

► most lines are narrow: dominated by protostellar envelope

► some lines are broader: contribution from outflow

3. Spectra

6. Physical model

Radius [AU]

For more details see (Van der Tak et al. 2013).

7. Abundances

Abundances were estimated using Ratran (Hogerheijde & van der Tak 2000).

- ► Some molecules are evenly distributed through the envelope: $[N_2H^+]=5e-10$, [NO]=2e-8, [CN]=8e-11, [CO]=3e-5 and $[HCO^+]=9e-9$.
- ▶ HNC, HCN and its isotopologues are more abundant in the inner envelope, when T > 230 K ([HCN]=1e-5, [HNC]=3e-7). This temperature was predicted by the chemical models in which most of the atomic oxygen is driven into water. As a result atomic C and N abundances are higher, thus HCN abundance is increased as well at T > 230 K (Boonman et al. 2001).
- \triangleright NH₃ is concentrated in the inner part of the envelope (3e-7), when T > 100 K, i.e., where water ice evaporates; van der Tak et al. 2006).